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Abstract. The string-matching field has grown at a such complicated
stage that various issues come into play when studying it: data structure
and algorithmic design, database principles, compression techniques, ar-
chitectural features, cache and prefetching policies. The expertise nowa-
days required to design good string data structures and algorithms is
therefore transversal to many computer science fields and much more
study on the orchestration of known, or novel, techniques is needed to
make progress in this fascinating topic. This survey is aimed at illustrat-
ing the key ideas which should constitute, in our opinion, the current
background of every index designer. We also discuss the positive fea-
tures and drawbacks of known indexing schemes and algorithms, and
devote much attention to detail research issues and open problems both
on the theoretical and the experimental side.

1 Introduction

String data is ubiquitous, common-place applications are digital libraries and
product catalogs (for books, music, software, etc.), electronic white and yel-
low page directories, specialized information sources (e.g. patent or genomic
databases), customer relationship management of data, etc.. The amount of tex-
tual information managed by these applications is increasing at a staggering rate.
The best two illustrative examples of this growth are the World-Wide Web, which
is estimated to provide access to at least three terabytes of textual data, and
the genomic databases, which are estimated to store more than fifteen billion of
base pairs. Even in private hands are common now collection sizes which were
unimaginable a few years ago.

This scenario is destined to become more pervasive due to the migration of
current databases toward XML storage [2]. XML is emerging as the de facto
standard for the publication and interchange of heterogeneous, incomplete and
irregular data over the Internet and amongst applications. It provides ground
rules to mark up data so it is self-describing and easily readable by humans and
computers. Large portions of XML data are textual and include descriptive fields
and tags. Evaluating an XML query involves navigating paths through a tree
(or, in general, a graph) structure. In order to speed up query processing, current
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approaches consist of encoding document paths into strings of arbitrary length
(e.g. book/author/firstname/) and replacing tree navigational operations with
string prefix queries (see e.g. [52,129,4]).

In all these situations brute-force scanning of such large collections is not
a viable approach to perform string searches. Some kind of index has to be
necessarily built over these massive textual data to effectively process string
queries (of arbitrarily lengths), possibly keeping into account the presence in our
computers of various memory levels, each with its technological and performance
characteristics [8]. The index design problem therefore turns out to be more
challenging than ever before.

The American Heritage Dictionary (2000, fourth edition) defines index as
follows: pl. (in · dex · es) or (in · di · ces) “ 1. Something that serves to
guide, point out, or otherwise facilitate reference, especially: a. An alphabetized
list of names, places, and subjects treated in a printed work, giving the page or
pages on which each item is mentioned. b. A thumb index. c. Any table, file, or
catalog. [...]”

Some definitions proposed by experts are “The most important of the tools for
information retrieval is the index—a collection of terms with pointers to places
where information about documents can be found” [119]; “indexing is building
a data structure that will allow quick searching of the text” [22]; or “the act of
assigning index terms to documents which are the objects to be retrieved” [111].

From our point of view an index is a persistent data structure that allows at
query time to focus the search for a user-provided string (or a set of them) on a
very small portion of the indexed data collection, namely the locations at which
the queried string(s) occur. Of course the index is just one of the tools needed
to fully solve a user query, so as the retrieval of the queried string locations is
just the first step of what is called the “query answering process”. Information
retrieval (IR) models, ranking algorithms, query languages and operations, user-
feedback models and interfaces, and so on, all of them constitute the rest of this
complicated process and are beyond the scope of this survey. Hereafter we will
concentrate our attention onto the challenging problems concerned with the de-
sign of efficient and effective indexing data structures, the basic block upon which
every IR system is built. We then refer the reader interested into those other
interesting topics to the vast literature, browsing from e.g. [79,114,163,22,188].

The right step into the text-indexing field. The publications regarding
indexing techniques and methodologies are a common outcome of database and
algorithmic research. Their number is ever growing so that citing all of them is
a task doomed to fail. This fact is contributing to make the evaluation of the
novelty, impact and usefulness of the plethora of recent index proposals more
and more difficult. Hence to approach from the correct angle the huge field of
text indexing, we first need a clear framework for development, presentation and
comparison of indexing schemes [193]. The lack of this framework has lead some
researchers to underestimate the features of known indexes, disregard important
criteria or make simplifying assumptions which have lead them to unrealistic
and/or distort results.
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The design of a new index passes through the evaluation of many criteria,
not just its description and some toy experiments. We need at a minimum to
consider overall speed, disk and memory space requirements, CPU time and mea-
sures of disk traffic (such as number of seeks and volume of data transferred),
and ease of index construction. In a dynamic setting we should also consider
index maintenance in the presence of addition, modification and deletion of doc-
uments/records; and implications for concurrency, transactions and recoverabil-
ity. Also of interest for both static and dynamic data collections are applicability,
extensibility and scalability. Indeed no indexing scheme is all-powerful, different
indexes support different classes of queries and manage different kinds of data,
so that they may turn out to be useful in different application contexts. As a
consequence there is no one single winner among the indexing data structures
nowadays available, each one has its own positive features and drawbacks, and
we must know all of their fine details in order to make the right choice when
implementing an effective and efficient search engine or IR system.

In what follows we therefore go into the main aspects which influence the
design of an indexing data structure thus providing an overall view of the text
indexing field; we introduce the arguments which will be detailed in the next
sections, and we briefly comment on some recent topics of research that will be
fully addressed at the end of each of these subsequent sections.

The first key issue: The I/O subsystem. The large amount of textual
information currently available in electronic form requires to store it into external
storage devices, like (multiple) disks and cdroms. Although these mechanical
devices provide a large amount of space at low cost, their access time is more than
105 times slower than the time to access the internal memory of computers [158].
This gap is currently widening with the impressive technological progresses on
circuit design technology. Ongoing research on the engineering side is therefore
trying to improve the input/output subsystem by introducing some hardware
mechanisms such as disk arrays, disk caches, etc.. Nevertheless the improvement
achievable by means of a proper arrangement of data and a properly structured
algorithmic computation on disk devices abundantly surpasses the best expected
technology advancements [186].

Larger datasets can stress the need for locality of reference in that they
may reduce the chance of sequential (cheap) disk accesses to the same block or
cylinder; they may increase the data fetch costs (which are typically linear in the
dataset size); and they may even affect the proportion of documents/records that
answer to a user query. In this situation a näıve index might incur the so called
I/O-bottleneck, that is, its update and query operations might spend most of the
time in transferring data to/from the disk with a consequent sensible slowdown of
their performance. As a result, the index scalability and the asymptotic analysis
of index performance, orchestrated with the disk consciousness of index design,
are nowadays hot and challenging research topics which have shown to induce
a positive effect not limited just to mechanical storage devices, but also to all
other memory levels (L1 and L2 caches, internal memory, etc.).
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To design and carefully analyze the scalability and query performance of
an index we need a computational model that abstracts in a reasonable way
the I/O-subsystem. Accurate disk models are complex [164], and it is virtually
impossible to exploit all the fine points of disk characteristics systematically,
either in practice or for algorithmic design. In order to capture in an easy, yet
significant, way the differences between the internal (electronic) memory and
the external (mechanical) disk, we adopt the external memory model proposed
in [186]. Here a computer is abstracted to consist of a two-level memory: a fast
and small internal memory, of size M , and a slow and arbitrarily large external
memory, called disk. Data between the internal memory and the disk are trans-
fered in blocks of size B (called disk pages). Since disk accesses are the dominating
factor in the running time of many algorithms, the asymptotic performance of
the algorithms is evaluated by counting the total number of disk accesses per-
formed during the computation. This is a workable approximation for algorithm
design, and we will use it to evaluate the performance of query and update al-
gorithms. However there are situations, like in the construction of indexing data
structures (Sections 2.1 and 3.5), in which this accounting scheme does not ac-
curately predict the running time of algorithms on real machines because it does
not take into account some important specialties of disk systems [162]. Namely,
disk access costs have mainly two components: the time to fetch the first bit
of requested data (seek time) and the time required to transmit the requested
data (transfer rate). Transfer rates are more or less stable but seek times are
highly variable. It is thus well known that accessing one page from the disk in
most cases decreases the cost of accessing the page succeeding it, so that “bulk”
I/Os are less expensive per page than “random” I/Os. This difference becomes
much more prominent if we also consider the reading-ahead/buffering/caching
optimizations which are common in current disks and operating systems. To deal
with these specialties and avoid the introduction of many new parameters, we
will sometime refer to the simple accounting scheme introduced in [64]: a bulk
I/O is the reading/writing of a contiguous sequence of cM/B disk pages, where
c is a proper constant; a random I/O is any single disk-page access which is not
part of a bulk I/O.

In summary the performance of the algorithms designed to build, process or
query an indexing data structure is therefore evaluated by measuring: (a) the
number of random I/Os, and possibly the bulk I/Os, (b) the internal running
time (CPU time), (c) the number of disk pages occupied by the indexing data
structure and the working space of the query, update and construction algo-
rithms.

The second key issue: types of queries and indexed data. Up to now
we have talked about indexing data structures without specifying the type of
queries that an index should be able to support as well no attention has been
devoted to the type of data an index is called to manage. These issues have a
surprising impact on the design complexity and space occupancy of the index,
and will be strictly interrelated in the discussion below.
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There are two main approaches to index design: word-based indexes and full-
text indexes. Word-based indexes are designed to work on linguistic texts, or on
documents where a tokenization into words may be devised. Their main idea is to
store the occurrences of each word (token) in a table that is indexed via a hashing
function or a tree structure (they are usually called inverted files or indexes).
To reduce the size of the table, common words are either not indexed (e.g. the,
at, a) or the index is later compressed. The advantage of this approach is to
support very fast word (or prefix-word) queries and to allow at reasonable speed
some complex searches like regular expression or approximate matches; while
two weaknesses are the impossibility in dealing with non-tokenizable texts, like
genomic sequences, and the slowness in supporting arbitrary substring queries.
Section 2 will be devoted to the discussion of word-based indexes and some recent
advancements on their implementation, compression and supported operations.
Particular attention will be devoted to the techniques used to compress the
inverted index or the input data collection, and to the algorithms adopted for
implementing more complex queries.

Full-text indexes have been designed to overcome the limitations above by
dealing with arbitrary texts and general queries, at the cost of an increase in
the additional space occupied by the underlying data structure. Examples of
such indexes are: suffix trees [128], suffix arrays [121] and String B-trees [71].
They have been successfully applied to fundamental string-matching problems
as well to text compression [42], analysis of genetic sequences [88], optimization
of Xpath queries on XML documents [52,129,4] and to the indexing of special
linguistic texts [67]. General full-text indexes are therefore the natural choice to
perform fast complex searches without any restrictions on the query sequences
and on the format of the indexed data; however, a reader should always keep
in mind that these indexes are usually more space demanding than their word-
based counterparts [112,49] (cfr. opportunistic indexes [75] below). Section 3 will
be devoted to a deep discussion on full-text indexes, posing particular attention
to the String B-tree data structure and its engineering. In particular we will
introduce some novel algorithmic and data structural solutions which are not
confined to this specific data structure. Attention will be devoted to the chal-
lenging, yet difficult, problem of the construction of a full-text index both from
a theoretical and a practical perspective. We will show that this problem is re-
lated to the more general problem of string sorting, and then discuss the known
results and a novel randomized algorithm which may have practical utility and
whose technical details may have an independent interest.

The third key issue: the space vs. time trade-off. The discussion on the
two indexing approaches above has pointed out an interesting trade-off: space
occupancy vs. flexibility and efficiency of the supported queries. It indeed seems
that in order to support substring queries, and deal with arbitrary data col-
lections, we do need to incur in an additional space overhead required by the
more complicated structure of the full-text indexes. Some authors argue that this
extra-space occupancy is a false problem because of the continued decline in the
cost of external storage devices. However the impact of space reduction goes far
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beyond the intuitive memory saving, because it may induce a better utilization
of (the fast) cache and (the electronic) internal memory levels, may virtually ex-
pand the disk bandwidth and significantly reduce the (mechanical) seek time of
disk systems. Hence data compression is an attractive choice, if not mandatory,
not only for storage saving but also for its favorable impact on algorithmic per-
formance. This is very well known in algorithmics [109] and engineering [94]: IBM
has recently delivered the MXT Technology (Memory eXpansion Technology) for
its x330 eServers which consists in a memory chip that compresses/decompresses
data on cache writebacks/misses thus yielding a factor of expansion two on mem-
ory size with just a slightly larger cost. It is not surprising, therefore, that we are
witnessing in the algorithmic field an upsurging interest for designing succinct
(or implicit) data structures (see e.g. [38,143,144,142,87,168,169]) that try to re-
duce as much as possible the auxiliary information kept for indexing purposes
without introducing any significant slowdown in the operations supported.

Such a research trend has lead to some surprising results on the design of com-
pressed full-text indexes [75] whose impact goes beyond the text-indexing field.
These results lie at the crossing of three distinct research fields— compression,
algorithmics, databases— and orchestrate together their latest achievements,
thus showing once more that the design of an indexing data structure is nowa-
days an interdisciplinary task. In Section 4 we will briefly overview this issue
by introducing the concept of opportunistic index: a data structure that tries to
take advantage of the compressibility of the input data to reduce its overall space
occupancy. This index encapsulates both the compressed data and the indexing
information in a space which is proportional to the entropy of the indexed col-
lection, thus resulting optimal in an information-content sense. Yet these results
are mainly theoretical in their flavor and open to significant improvements with
respect to their I/O performance. Some of them have been implemented and
tested in [76,77] showing that these data structures use roughly the same space
required by traditional compressors—such as gzip and bzip2 [176]— but with
added functionalities: they allow to retrieve the occurrences of an arbitrary sub-
string within texts of several megabytes in a few milliseconds. These experiments
show a promising line of research and suggest the design of a new family of text
retrieval tools which will be discussed at the end of Section 4.

The fourth key issue: String transactions and index caching. Not
only is string data proliferating, but datastores increasingly handle large number
of string transactions that add, delete, modify or search strings. As a result, the
problem of managing massive string data under large number of transactions
is emerging as a fundamental challenge. Traditionally, string algorithms focus
on supporting each of these operations individually in the most efficient manner
in the worst case. There is however an ever increasing need for indexes that
are efficient on an entire sequence of string transactions, by possibly adapting
themselves to time-varying distribution of the queries and to the repetitiveness
present in the query sequence both at string or prefix level. Indeed it is well
known that some user queries are frequently issued in some time intervals [173]
or some search engines improve their precision by expanding the query terms
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with some of their morphological variations (e.g. synonyms, plurals, etc.) [22].
Consequently, in the spirit of amortized analysis [180], we would like to design
indexing data structures that are competitive (optimal) over the entire sequence
of string operations. This challenging issue has been addressed at the heuris-
tic level in the context of word-based indexes [173,39,125,131,101]; but it has
been unfortunately disregarded when designing and analyzing full-text indexes.
Here the problem is particularly difficult because: (1) a string may be so long
to do not fit in one single disk page or even be contained into internal mem-
ory, (2) each string comparison may need many disk accesses if executed in a
brute-force manner, and (3) the distribution of the string queries may be un-
known or vary over the time. A first, preliminary, contribution in this setting has
been achieved in [48] where a self-adjusting and external-memory variant of the
skip-list data structure [161] has been presented. By properly orchestrating the
caching of this data structure, the caching of some query-string prefixes and the
effective management of string items, the authors prove an external-memory ver-
sion for strings of the famous Static Optimality Theorem [180]. This introduces
a new framework for designing and analyzing full-text indexing data structures
and string-matching algorithms, where a stream of user queries is issued by an
unknown source and caching effects must then be exploited and accounted for
when analyzing the query operations. In the next sections we will address the
caching issue both for word-based and full-text indexing schemes, pointing out
some interesting research topics which deserve a deeper investigation.

The moral that we would like to convey to the reader is that the text in-
dexing field has grown at a such complicated stage that various issues come
into play when studying it: data structure design, database principles, compres-
sion techniques, architectural considerations, cache and prefetching policies. The
expertise nowadays required to design a good index is therefore transversal to
many algorithmic fields and much more study on the orchestration of known,
or novel, techniques is needed to make progress in this fascinating topic. The
rest of the survey is therefore devoted to illustrate the key ideas which should
constitute, in our opinion, the current background of every index-designer. The
guiding principles of our discussion will be the four key issues above; they will
guide the description of the positive features and drawbacks of known indexing
schemes as well the investigation of research issues and open problems. A vast,
but obviously not complete, literature will accompany our discussion and should
be the reference where an eager reader may find further technical details and
research hints.

2 On the word-based indexes

There are three main approaches to design a word-based index: inverted indexes,
signature files and bitmaps [188,22,19,63]. The inverted index— also known as
inverted file, posting file, or in normal English usage as concordance— is doubtless
the simplest and most popular technique for indexing large text databases storing
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natural-language documents. The other two mechanisms are usually adopted in
certain applications even if, recently, they have been mostly abandoned in favor
of inverted indexes because some extensive experimental results [194] have shown
that: Inverted indexes offer better performance than signature files and bitmaps,
in terms of both size of index and speed of query handling [188]. As a consequence,
the emphasis of this section is on inverted indexing; a reader interested into
signature files and/or bitmaps may start browsing from [188,22] and have a look
to some more recent, correlated and stimulating results in [33,134].

An inverted index is typically composed of two parts: the lexicon, also called
the vocabulary, containing all the distinct words of the text collection; and the
inverted list, also called the posting list, storing for each vocabulary term a list of
all text positions in which that term occurs. The vocabulary therefore supports
a mapping from words to their corresponding inverted lists and in its simplest
form is a list of strings and disk addresses. The search for a single word in
an inverted index consists of two main phases: it first locates the word in the
vocabulary and then retrieves its list of text positions. The search for a phrase
or a proximity pattern (where the words must appear consecutively or close to
each other, respectively) consists of three main phases: each word is searched
separately, their posting lists are then retrieved and finally intersected, taking
care of consecutiveness or closeness of word positions in the text.

It is apparent that the inverted index is a simple and natural indexing scheme,
and this has obviously contributed to its spread among the IR systems. Starting
from this simple theme, researchers indulged theirs whims by proposing numer-
ous variations and improvements. The main aspect which has been investigated
is the compression of the vocabulary and of the inverted lists. In both cases we
are faced with some challenging problems.

Since the vocabulary is a textual file any classical compression technique
might be used, provided that subsequent pattern searches can be executed effi-
ciently. Since the inverted lists are constituted by numbers any variable length
encoding of integers might be used, provided that subsequent sequential decod-
ings can be executed efficiently. Of course, any choice in vocabulary or inverted
lists implementation influences both the processing speed of queries and the
overall space occupied by the inverted index. We proceed then to comment each
of these points below, referring the reader interested into their fine details to the
cited literature.

The vocabulary is the basic block of the inverted index and its “content”
constraints the type of queries that a user can issue. Actually the index de-
signer is free to decide what a word is, and which are the representative words
to be included into the vocabulary. One simple possibility is to take each of the
words that appear in the document and declare them verbatim to be vocabulary
terms. This tends both to enlarge the vocabulary, i.e. the number of distinct
terms that appear into it, and increase the number of document/position iden-
tifiers that must be stored in the posting lists. Having a large vocabulary not
only affects the storage space requirements of the index but can also make it
harder to use since there are more potential query terms that must be con-
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sidered when formulating a query. For this reason it is common to transform
each word in some normal form before being included in the vocabulary. The
two classical approaches are case folding, the conversion of all uppercase letters
to their lowercase equivalents (or vice versa), and stemming, the reduction of
each word to its morphological root by removing suffixes or other modifiers. It
is evident that both approaches present advantages (vocabulary compression)
and disadvantages (extraneous material can be retrieved at query time) which
should be taken into account when designing an IR system. Another common
transformation consists of omitting the so called stop words from the indexing
process (e.g., a, the, in): They are words which occur too often or carry such
small information content that their use in a query would be unlikely to eliminate
any documents. In the literature there has been a big debate on the usefulness
of removing or keeping the stop words. Recent progresses on the compaction of
the inverted lists have shown that the space overhead induced by those words is
not significant, and is abundantly payed for by the simplification in the indexing
process and by the increased flexibility of the resulting index.

The size of the vocabulary deserves a particular attention. It is intuitive that
it should be small, but more insight on its cardinality and structure must be ac-
quired in order to go into more complex considerations regarding its compression
and querying. An empirical law widely accepted in IR is the Heaps’ Law [91],
which states that the vocabulary of a text of n words is of size V = O(nβ),
where β is a small positive constant depending on the text. As shown in [16], β
is practically between 0.4 and 0.6 so the vocabulary needs space proportional to
the square root of the indexed data. Hence for large data collections the overhead
of storing the vocabulary, even in its extended form, is minimal. Classical imple-
mentations of a set of words via hash tables and trie structures seem appropriate
for exact word or prefix word queries. As soon as the user aims for more compli-
cated queries, like approximate or regular-expression searches, it is preferable to
keep the vocabulary in its plain form as a vector of words and then answer a user
query via one of the powerful scan-based string-matching algorithms currently
known [148]. The increase in query time is payed for by the more complicated
queries the index is able to support.

As we observed in the Introduction, space saving is intimately related to
time optimization in a hierarchical memory system, so that it turns out to
be natural to ask ourselves if, and how, compression can help in vocabulary
storage and searching. From one hand, vocabulary compression might seem
useless because of its small size; but from the other hand, any improvement
in the vocabulary search-phase it is appealing because the vocabulary is ex-
amined at each query on all of its constituting terms. Numerous scientific re-
sults [9,118,82,81,184,65,139,108,154,178,57,140,149,106] have recently shown how
to compress a textual file and perform exact or approximate searches directly
on the compressed text without passing through its whole decompression. This
approach may be obviously applied to vocabularies thus introducing two imme-
diate improvements: it squeezes them to an extension that can be easily kept
into internal memory even for large data collections; it reduces the amount of
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data examined during the query phase, and it fully exploits the processing speed
of current processors with respect to the bandwidth and access time of internal
memories, thus impacting fruitfully onto the overall query performance. Exper-
iments have shown a speed up of a factor about two in query processing and a
reduction of more than a factor three in space occupancy. Nonetheless the whole
scanning of the compressed dictionary is afforded, so that some room for query
time improvement is still possible. We will be back on this issue in Section 4.

Most of the space usage of inverted indexes is devoted to the storage of the
inverted lists; a proper implementation for them thus becomes urgent in order
to make such an approach competitive against the other word-based indexing
methods: signature files and bitmaps [188,194]. A large research effort has been
therefore devoted to effectively compress the inverted lists still guaranteeing
a fast sequential access to their contents. Three different types of compaction
approaches have been proposed in the literature, distinguished according to the
accuracy to which the inverted lists identify the location of a vocabulary term,
usually called granularity of the index. A coarse-grained index identifies only the
documents where a term occurs; an index of moderate-grain partitions the texts
into blocks and stores the block numbers where a term occurs; a fine-grained
index returns instead a sentence, a term number, or even the character position
of every term in the text. Coarse indexes require less storage (less than 25%
of the collection size), but during the query phase parts of the text must be
scanned in order to find the exact locations of the query terms; also, with a
coarse index multi-term queries are likely to give rise to insignificant matches,
because the query terms might appear in the same document but far from each
other. At the other extreme, a word-level indexing enables queries involving
adjacency and proximity to be answered quickly because the desired relationship
can be checked without accessing the text. However, adding precise locational
information expands the index of at least a factor of two or three, compared with
a document-level indexing since there are more pointers in the index and each
one requires more bits of storage. In this case the inverted lists take nearly 60% of
the collection size. Unless a significant fraction of the queries are expected to be
proximity-based, or “snippets” containing text portions where the query terms
occur must be efficiently visualized, then it is preferable to choose a document-
level granularity; proximity and phrase-based queries as well snippet extraction
can then be handled by a post-retrieval scan.

In all those cases the size of the resulting index can be further squeezed down
by adopting a compression approach which is orthogonal to the previous ones.
The key idea is that each inverted list can be sorted in increasing order, and
therefore the gaps between consecutive positions can be stored instead of their
absolute values. Here can be used compression techniques for small integers.
As the gaps for longer lists are smaller, longer lists can be compressed better
and thus stop words can be kept without introducing a significant overhead
in the overall index space. A number of suitable codes are described in detail
in [188], more experiments are reported in [187]. Golomb codes are suggested
as the best ones in many situations, e.g. TREC collection, especially when the
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integers are distributed according to a geometric law. Our experience however
suggests to use a simpler, yet effective, coding scheme which is called continuation
bit and is currently adopted in Altavista and Google search engines for storing
compactly their inverted lists. This coding scheme yields a byte-aligned and
compact representation of an integer x as follows. First, the binary representation
of x is partitioned into groups of 7 bits each, possibly appending zeros to its
beginning; then, one bit is appended to the front of each group setting it to
one for the first group and to zero for the other groups; finally, the resulting
sequence of 8-bit groups is allocated to a contiguous sequence of bytes. The
byte-aligning ensures fast decoding/encoding operations, whereas the tagging of
the first bit of every byte ensures the fast detection of codeword beginnings. For
an integer x, this representation needs ⌊log2 x + 1⌋/7 bytes; experiments show
that its overhead wrt Golomb codes is small, but the Continuation bit scheme
is by far much faster in decoding thus resulting the natural choice whenever the
space issue is not a main concern. If a further space overhead is allowed and
queries have to be speeded up, other integer coding approaches do exist. Among
the others we cite the frequency sorted index organization of [159], which sorts
the posting lists in decreasing order of frequency to facilitate the immediate
retrieval of relevant occurrences, and the blocked index of [7] which computes
the gaps with respect to some equally-sampled pivots to avoid the decoding of
some parts of the inverted lists during their intersection at query time.

There is another approach to index compression which encompasses all the
others because it can be seen as their generalization. It is called block-addressing
index and was introduced in a system called Glimpse some years ago [122]. The
renewed interest toward it is due to some recent results [153,75] which have
shed new light on its structure and opened the door to further improvements.
In this indexing scheme, the whole text collection is divided into blocks of fixed
size; these blocks may span many documents, be part of a document, or overlap
document boundaries. The index stores only the block numbers where each vo-
cabulary term appears. This introduces two space savings: multiple occurrences
of a vocabulary term in a block are represented only once, and few bits are needed
to encode a block number. Since there are normally much less blocks than docu-
ments, the space occupied by the index is very small and can be tuned according
to the user needs. On the other hand, the index may by used just as a device
to identify some candidate blocks which may contain a query-sting occurrence.
As a result a post-processing phase is needed to filter out the candidate blocks
which actually do not contain a match (e.g. the block spans two documents and
the query terms are spread in both of them). As in the document-level indexing
scheme, block-addressing requires very little space, close to 5% of the collection
size [122], but its query performance is modest because of the postprocessing
step and critically depends on the block size. Actually by varying the block size
we can make the block-addressing scheme to range from coarse-grained to fine-
grained indexing. The smaller the block size, the closer to a word-level index we
are, the larger is the index but the faster is the query processing. On the other
extreme, the larger is the block size, the smaller is the space occupancy but the
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larger is the query time. Finding a good trade-off between these two quantities
is then a matter of user needs; the analysis we conduct below is based on some
reasonable assumptions on the distribution of the vocabulary terms and the lin-
guistic structure of the documents [20,21]. This allows us to argue about some
positive features of the block-addressing scheme.

The Heaps’ law, introduced above, gives a bound on the vocabulary size. An-
other useful law related to the vocabulary is the Zipf’s Law [190] which states
that, in a text of n terms, the ith most frequent term appears n/(iθz) times,
where θ is a constant that depends on the data collection (typical [90] experi-
mental values are in [1.7, 2.0]) and z is a normalization factor. Given this model,
it has been shown in [21] that the block-addressing scheme may achieve O(n0.85)
space and query time complexity; notice that both complexities are sublinear in
the data size.

Apart from this analytical calculations, it is apparent that speeding up the
postprocessing step (i.e. the scanning of candidate blocks) would impact on the
query performance of the index. This was the starting point of the fascinat-
ing paper [153] which investigated how to combine in a single scheme: index
compression, block addressing and sequential search on compressed text. In this
paper the specialized compression technique of [140] is adopted to squeeze each
text block in less than 25% of its original size, and perform direct searching on
the compressed candidate blocks without passing through their whole decom-
pression. The specialty of this compression technique is that it is a variant of
the Huffman’s algorithm with byte-aligned and tagged codewords. Its basic idea
is to build a Huffman tree with fan-out 128, so that the binary codewords have
length a multiple of 7 bits. Then these codewords are partitioned into groups of
7 bits; to each group is appended a bit that is set to 1 for the first group and
to 0 for the others; finally, each 8-bit group is allocated to a byte. The result-
ing codewords have many nice properties: (1) they are byte-aligned, hence their
decoding is fast and requires very few shift/masking operations; (2) they are
tagged, hence the beginning of each codeword can be easily identified; (3) they
allow exact pattern-matching directly over the compressed block, because no
tagged codeword can overlap more then two tagged codewords; (4) they allow the
search for more complex patterns directly on the compressed blocks [140,153].
The overall result is an improvement of a factor about 3 over well known tools
like Agrep [189] and Cgrep [140], which operate on uncompressed blocks. If we
add to these interesting features the fact that the symbol table of this Huffman’s
variant is actually the vocabulary of the indexed collection, then we may con-
clude that this approach couples perfectly well with the inverted-index scheme.

Figure 1 provides a pictorial summary of the block-addressing structure. We
will be back on this approach in Section 4 where we discuss and analyze a novel
compressed index for the candidate blocks which has opened the door to further
improvements.
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decoded block number

Fig. 1. The highlevel structure of the block-addressing scheme.

2.1 Constructing an inverted index

This journey among the inverted index variations and results has highlighted
some of their positive features as well their drawbacks. It is clear that the struc-
ture of the inverted index is suitable to be mapped in a two-level memory system,
like the disk/memory case. The vocabulary can be kept in internal memory, it
is usually small and random accesses must be performed on its terms in order
to answer the user queries; the inverted lists can be allocated on disk each in a
contiguous sequence of disk pages, thus fully exploiting the prefetching/caching
capabilities of current disks during the subsequent gap-decoding operations. In
this case the performance of current processors is sufficient to make transparent
the decoding cost with respect to the one incurred for fetching the compressed
lists from the disk.

There is however another issue which has been not addressed in the previ-
ous sections and offers some challenging problems to be deal with. It concerns
with the construction of the inverted lists. Here, the I/O-bottleneck can play a
crucial role, and a näıve algorithm might be unable to build the index even for
collections of moderate size. The use of in-memory data structures of size larger
than the actual internal memory and the non sequential access to them, might
experience a so high paging activity of the system to require one I/O per opera-
tion ! Efficient methods have been presented in the literature [136,188] to allow
a more economical index construction. From an high-level point of view, they
follow an algorithmic scheme which recalls to our mind the multiway mergesort
algorithm; however, the specialties of the problem make compression a key tool
to reduce the volume of processed data and constraint to reorganize the opera-
tions in order to make use of sequential disk-based processing. For the sake of
completeness we sketch here an algorithm that has been used to build an inverted
index over a multi-gigabyte collection of texts within few tens of megabytes of
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internal memory and only a small amount of extra disk space. The algorithm will
be detailed for the case of a document-level indexing scheme, other extensions
are possible and left to the reader as an exercise. The basis of the method is
a process that creates a file of pairs 〈d, t〉, where d is a document number and
t is a term number. Initially the file is ordered by increasing d, then the file is
reordered by increasing t using an in-place multi-way external mergesort. This
sorting phase is then followed by an in-place permutation of the disk pages that
collectively constitute the inverted lists in order to store each of them into a
consecutive sequence of disk pages.

In detail, the collection is read in document order and parsed into terms,
which will form the vocabulary of the inverted index. A bounded amount of
internal memory is set aside as a working buffer. Pairs 〈d, t〉 are collected into
the buffer until it is full; after that, it is sorted according to the term numbers
and a run of disk pages is written to disk in a compressed format (padding is
used to get disk-page alignment). Once all the collection has been processed,
the resultant runs are combined via a multiway merge: Just one block of each
run is resident in memory at any given time, and so the memory requirement is
modest. As the merge proceeds, output blocks are produced and written back to
disk (properly compressed) to any available slot. Notice that there will be always
one slot available because the reading (merging) process frees the block slots at
a faster rate than the blocks consumed by the writing process. Once all the runs
have been exhausted, the index is complete, but the inverted lists are spread
over the disk so that locality of reference is absent and this would slowdown the
subsequent query operations. An in-place permutation is then used to reorder
the blocks in order to allocate each inverted list into a contiguous sequence of
disk pages. This step is disk-intensive, but usually executed for a short amount
of time. At the end a further pass on the lists can be executed to “refine”
their compression; any now-unused space at the end of the file can be released.
Experimental results [188,153] have shown that the amount of internal memory
dedicated to the sorting process impacts a lot, as expected, on the final time
complexity. Just to have an idea, a 5 Gb collection can be inverted using an
internal memory space which is just the one required for the vocabulary, and a
disk space which is about 10% more than the final inverted lists, at an overall
rate of about 300 Mb of text per hour [188]. If more internal memory is reserved
for the sorting process, then we can achieve an overall rate of about 1 Gb of text
per hour [153].

2.2 Some open problems and future research directions

We conclude this section by addressing some other interesting questions which,
we think, deserve some attention and further investigation. First, we point out
one challenging feature of the block-addressing scheme which has been not yet
fully exploited: the vocabulary allows to turn approximate or complex pattern
queries on the text collection into an exact search for, possibly many, vocab-
ulary terms on the candidate blocks (i.e. the vocabulary terms matching the
complex user query). This feature has been deployed in the solutions presented
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in [140,153] to speed up the whole scanning of the compressed candidate blocks.
We point out here a different perspective which may help in further improving
the postprocessing phase. Indeed we might build a succinct index that supports
just exact pattern searches on each compressed blocks, and then use it in combi-
nation with the block-addressing scheme to support arbitrarily complex pattern
searches. This index would gain powerful queries, reduced space occupancy and,
more importantly, a faster search operation because the cost of a candidate-block
searching could be o(b). This would impact onto the overall index design and
performance. A proposal in this direction has been pursued in [75], where it has
been shown that this novel approach achieves both space overhead and query time
sublinear in the data collection size independently of the block size b. Conversely,
inverted indices achieve only the second goal [188], and classical block-addressing
schemes achieve both goals but under some restrictive conditions on the value
of b [21].

Another interesting topic of research concerns with the design of indices and
methods for supporting faster vocabulary searches on complex pattern queries.
Hashing or trie structures are well suited to implement (prefix)word queries but
they actually fail in supporting suffix, substring or approximate word searches.
In these cases the common approach consists of scanning the whole vocabulary,
thus incurring in a performance slowdown that prevents its use in search en-
gines aiming for a high throughput. Filtering methods [148] as well novel metric
indexes [45] might possibly help in this respect but simple, yet effective, data
structures with provable query bounds are still to be designed.

We have observed that the block-addressing scheme and gap-coding methods
are the most effective tools to squeeze the posting lists in a reduced space. A
gap-coding algorithm achieves the best compression ratio if most of the differ-
ences are very small. Several authors [34,35,135] have noticed that this occurs
when the document numbers in each posting list have high locality, and hence
they designed methods to passively exploit this locality whenever present in the
posting lists. A different approach to this problem has been undertaken recently
in [32] where the authors suggest to permute the document numbers in order to
actively create the locality in the individual posting lists. The authors propose
therefore a hierarchical clustering technique which is applied on the document
collection as a whole, using the cosine measure as a basis of document similar-
ity. The hierarchical clustering tree is then traversed in preorder and numbers
are assigned to the documents as they are encountered. The authors argue that
documents that share many term lists should be close together in the tree, and
therefore be labeled with near numbers. This idea was tested on the TREC-8
data (disks 4 and 5, excluding the Congressional Record), and showed a space
improvement of 14%. Different similarity measures to build the hierarchical tree,
as well different clustering approaches which possibly do not pass through the
exploration of the complete graph of all documents, constitute good avenues for
research.

Another interesting issue is the exploitation of the large internal memory cur-
rently available in our PCs to improve the query performance. A small fraction
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of the internal memory is already used at run time to maintain the vocabulary of
the document terms and thus to support fast word searches in response to a user
query. It is therefore natural to aim at using the rest of the internal memory to
cache parts of the inverted index or the last query answers, in order to exploit the
reference and temporal locality commonly present in the query streams [99,179]
for achieving improved query performance. Due to the ubiquitous use of in-
verted lists in current web search engines, and the ever increasing amount of
user queries issued per day, the design of caching methodologies suitable for
inverted-indexing schemes is becoming a hot topic of research. Numerous papers
have been recently published on this subject, see e.g. [173,39,125,131,101], which
offer some challenging problems for further study: how the interplay between the
retrieval and ranking phase impacts on the caching strategy, how the compres-
sion of inverted lists affects the behavior of caching schemes, how to extend the
caching ideas developed for stand-alone machines to a distributed information
retrieval architecture [131,183]. We refer the reader to the latest WWW, VLDB
and SIGMOD/PODS conferences for keeping track of this active research field.

On the software development side, there is much room for data structural
and algorithmic engineering as well code tuning and library design. Here we
would like to point out just one of the numerous research directions which en-
compasses the interesting XML language [2]. XML is an extremely versatile
markup language, capable of labeling the information content of diverse data
sources including structured or semi-structured documents, relational databases
and object repositories. A query issued on XML documents might exploit intel-
ligently their structure to manage uniformly all these kinds of data and to enrich
the precision of the query answers. Since XML was completed in early 1998 by
the World Wide Web Consortium [2], it has spread through science and indus-
try, thus becoming a de facto standard for the publication and interchange of
structured data over the Internet and amongst applications. The turning point is
that XML allows to represent the semantics of data in a structured, documented,
machine-readable form. This has lead some researchers to talk about “semantic
Web” in order to capture the idea of having data on the Web defined and linked
in a way that can be used by machines not just for display (cfr. HTML), but for
automation, integration, reuse across various applications and, last but not least,
for performing “semantic searches”. This is nowadays a vision but a huge num-
ber of people all around the world are working to its concretization. One of the
most tangible results of this effort is the plethora of IR systems specialized today
to work on XML data [116,98,27,175,6,61,129,3,52,104,18]. Various approaches
have been undertaken for their implementation but the most promising for flexi-
bility, space/time efficiency and complexity of the supported queries is doubtless
the one based on a “native” management of the XML documents via inverted
indexes [24,151]. Here the idea is to support structured text queries by index-
ing (real or virtual) tags as distinct terms and then answering the queries via
complex combinations of searches for words and tags. In this realm of solutions
there is a lack of a public, easily usable and customizable repository of algo-
rithms and data structures for indexing and querying XML documents. We are
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currently working in this direction [78]: at the present time we have a C library,
called XCDE Library (XCDE stands for Xml Compressed Document Engine) that
provides a set of algorithms and data structures for indexing and searching
an XML document collection in its “native” form. The library offers various
features: state-of-the-art algorithms and data structures for text indexing, com-
pressed space occupancy, and novel succinct data structures for the management
of the hierarchical structure present into the XML documents. Currently we are
using the XCDE Library to implement a search engine for a collection of Italian
literary texts marked with XML-TEI. The XCDE Library offers to a researcher
the possibility to investigate and experiment novel algorithmic solutions for in-
dexing and retrieval without being obliged to re-write from scratch all the basic
procedures which constitute the kernel of any classic IR system.

3 On the full-text indexes

The inverted-indexing scheme, as well any other word-based indexing method,
is well suited to manage text retrieval queries on linguistic texts, namely texts
composed in a natural language or properly structured to allow the identification
of “terms” that are the units upon which the user queries will be formulated.
Other assumptions are usually made to ensure an effective use of this indexing
method: the text has to follow some statistical properties that ensure, for ex-
ample, small vocabulary size, short words, queries mostly concerning with rare
terms and aiming at the retrieval of parts of words or entire phrases. Under these
restrictions, which are nonetheless satisfied in many practical user settings, the
inverted indexes are the choice since they provide efficient query performance,
small space usage, cheap construction time, and allow the easy implementation
of effective ranking techniques.

Full-text indexes, on the other hand, overcome the limitations of the word-
based indexes. They allow to manage any kind of data and support complex
queries that span arbitrary long parts of them; they allow to draw statistics
from the indexed data, as well make many kind of complex text comparisons
and investigations: detect pattern motifs, auto-repetitions with and without er-
rors, longest-repeated strings, etc.. The full-text indexes may be clearly applied
to classical information retrieval, but they are less adeguate than inverted in-
dexes since their additional power comes at some cost: they are more expensive
to build and occupy significant more space. The real interest in those indexing
data structures is motivated by some application settings where inverted in-
dexes result unappropriate, or even unusable: Building an inverted index on all
the substrings of the indexed data would need quadratic space ! The applications
we have in mind are: genomic databases (where the data collection consists of
DNA or protein sequences), intrusion detection (where the data are sequences
of events, log of accesses, along the time), oriental languages (where word delim-
iters are not so clear), linguistic analysis of the text statistics (where the texts
are composed by words but the queries require complex statistical elaborations
to detect plagiarism, for instance), Xpath queries in XML search engines (where
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the indexed strings are paths into the hierarchical tree structure of an XML doc-
ument), and vocabulary implementations to support exact or complex pattern
searches (even the inverted indexes might benefit of full-text indexes !).

These fascinating properties and the powerful nature of full-text indexes are
the starting points of our discussion. To begin with we need some notations and
definitions.

For the inverted indexes we defined as index points the block numbers, word
numbers or word starts in the indexed text. In the context of full-text indexes an
index point is, instead, any character position or, classically, any position where
a text suffix may start. In the case of a text collection, an index point is an
integer pair (j, i), where i is the starting position of the suffix in the jth text of
the collection. In most current applications, an index point is represented using
from 3 to 6 bytes, thus resulting independent on the actual length of the pointed
suffix, and characters are encoded as bit sequences, thus allowing the uniform
management of arbitrary large alphabets.

Let Σ be an arbitrarily large alphabet of characters, and let # be a new
character larger than any other alphabet character. We denote by lcp(P, Q) the
longest common prefix length of two strings P and Q, by max lcp(P,S) the
value max {lcp(P, Q) : Q ∈ S}, and by ≤L the lexicographic order between pair
of strings drawn from Σ. Finally, given a text T [1, n], we denote by SUF (T ) the
lexicographically ordered set of all suffixes of text T .

Given a pattern P [1, p], we say that there is an occurrence of P at the position
i of the text T , if P is a prefix of the suffix T [i, n], i.e., P = T [i, i + p− 1]. A key
observation is that: Searching for the occurrences of a pattern P in T amounts
to retrieve all text suffixes that have the pattern P as a prefix. In this respect,
the ordered set SUF (T ) exploits an interesting property found by Manber and
Myers [121]: the suffixes having prefix P occupy a contiguous part of SUF (T ).
In addition, the leftmost (resp. rightmost) suffix of this contiguous part follows
(resp. precedes) the lexicographic position of P (resp. P#) in the ordered set
SUF (T ). To perform fast string searches is then paramount to use a data struc-
ture that efficiently retrieves the lexicographic position of a string in the ordered
set SUF (T ).

As an example, let us set T = abababbc and consider the lexicographically
ordered set of all text suffixes SUF (T ) = {1, 3, 5, 2, 4, 6, 7, 8} (indicated by means
of their starting positions in T ). If we have P = ab, its lexicographic position
in SUF (T ) precedes the first text suffix T [1, 8] = abababbc, whereas the lexico-
graphic position of P# in SUF (T ) follows the fifth text suffix T [5, 8] = abbc.
From Manber-Myers’ observation (above), the three text suffixes between T [1, 8]
and T [5, 8] in SUF (T ) are the only ones prefixed by P and thus P occurs in T
three times at positions 1, 3 and 5. If we instead have P = baa, then both P
and P# have their lexicographic position in SUF (T ) between T [5, 8] = abbc and
T [2, 8] = bababbc, so that P does not occur in T .

The above definitions can be immediately extended to a text collection ∆ by
replacing SUF (T ) with the set SUF (∆) obtained by merging lexicographically
the suffixes in SUF (S) for all texts S ∈ ∆.
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3.1 Suffix arrays and suffix trees

The suffix array [121], or the PAT-array [84], is an indexing data structure that
supports fast substring searches whose cost does not depend on the alphabet’s
size. A suffix array consists of an array-based implementation of the set SUF (T ).
In the example above, the suffix array SA equals to [1, 3, 5, 2, 4, 6, 7, 8]. The search
in T for an arbitrary pattern P [1, p] exploits the lexicographic order present in
SA and the two structural observations made above. Indeed it first determines
the lexicographic position of P in SUF (T ) via a binary search with one level of
indirection: P is compared against the text suffix pointed to by the examined
SA’s entry. Each pattern-suffix comparison needs O(p) time in the worst case,
and thus O(p log n) time suffices for the overall binary search. In our example,
at the first step P = ab is compared against the entry SA[4] = 2, i.e. the
2nd suffix of T , and the binary search proceeds within the first half of SA since
P ≤L T [2, 8] = bababbc. After that the lexicographic position of P in SA has been
found, the search algorithm scans rightward the suffix array until it encounters
suffixes prefixed by P . This takes O(p occ) time in the worst case, where occ is
the number of occurrences of P in T . In our example, the lexicographic position
of P is immediately before the first entry of SA, and there are three suffixes
prefixed by P since P is not a prefix of T [SA[4], 8] = T [2, 8] = bababbc.

Of course the true behavior of the search algorithm depends on how many
long prefixes of P occur in T . If there are very few of such long prefixes, then it
will rarely happen that a pattern-suffix comparison in a binary-search step takes
Θ(p) time, and generally the O(p log n) bound is quite pessimistic. In “random”
strings this algorithm requires O(p+log n) time. This latter bound can be forced
to hold in the worst case too, by adding an auxiliary array, called Lcp array,
and designing a novel search procedure [121]. The array Lcp stores the longest-
common-prefix information between any two adjacent suffixes of SUF (T ), thus
it has the same length of SA. The novel search procedure still proceeds via a
binary search, but now a pattern-suffix comparison does not start from the first
character of the compared strings but it takes advantage of the comparisons
already executed and the information available in the Lcp array. However, since
practitioners prefer simplicity and space-compaction to time-efficiency guaran-
tee, this faster but space-consuming algorithm is rarely used in practice. From a
practical point of view, suffix arrays are a much space-efficient full-text indexing
data structure because they store only one pointer per indexed suffix (i.e. usually
3 bytes suffice). Nonetheless suffix arrays are pretty much static and, in case of
long text strings, the contiguous space needed for storing them can become too
constraining and may induce poor performance in an external-memory setting.
In fact, SA can be easily mapped onto disk by stuffing Θ(B) suffix pointers per
page [84], but in this case the search bound is O( p

B log2 N + occ
B ) I/Os, and it is

poor in practice because all of these I/Os are random.
To remedy this situation [23] proposed the use of supra-indices over the suffix

array. The key idea is to sample one out of b suffix array entries (usually b = Θ(B)
and one entry per disk page is sampled), and to store the first ℓ characters of each
sampled suffix in the supra-index. This supra-index is then used as a first step to
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reduce the portion of the suffix array where the binary search is performed. Such
a reduction impacts favorably on the overall number of random I/Os required
by the search operation. Some variations on this theme are possible, of course.
For example the supra-index does not need to sample the suffix array entries at
fixed intervals, and it does not need to copy in memory the same number ℓ of
suffix characters from each sampled suffix. Both these quantities might be set
according to the text structure and the space available in internal memory for
the supra-index. It goes without saying that if the sampled suffixes are chosen to
start at word boundaries and entire words are copied into the supra-index, the
resulting data structure turns out to be actually an inverted index. This shows
the high flexibility of full-text indexing data structures that, for a proper setting
of their parameters, boil down eventually to the weaker class of word-based
indexes.

On the other extreme, the smaller is the sampling step, the larger is the
memory requirement for the supra-index, and the faster is the search opera-
tion. Sampling every suffix would be fabulous for query performance but the
quadratic space occupancy would make this approach unaffordable. Actually if
a compacted trie is used to store all the suffixes, we end up into the most famous,
elegant, powerful and widely employed [15,88] full-text indexing data structure,
known as the suffix tree [128]. Each arc of the suffix tree is labeled with a text
substring T [i, j], represented via the triple (T, i, j), and the sibling arcs are or-
dered according to their first characters, which are distinct (see Figure 2). There
are no nodes having only one child except possibly the root and each node has
associated the string obtained by concatenating the labels found along the down-
ward path from the root to the node itself. By appending the special character
# to the text, the leaves have a one-to-one correspondence to the text suffixes,
each leaf stores a different suffix and their rightward scanning gives actually the
suffix array. It is an interesting exercise to design an algorithm which goes from
the suffix array and the Lcp array to the suffix tree in linear time.

Suffix trees are also augmented by means of some special node-to-node point-
ers, called suffix links [128], which turn out to be crucial for the efficiency of
complex searches and updates. The suffix link from a node storing a nonempty
string, say aS for a character a, leads to the node storing S and this node always
exists. There can be Θ(|Σ|) suffix links leading to a suffix-tree node because we
can have one suffix link for each possible character a ∈ Σ. Suffix trees require
linear space and are sometimes called generalized suffix trees when built upon a
text collection ∆ [10,89]. Suffix trees, and compacted tries in general, are very
efficient in searching an arbitrary pattern string because the search is directed
by the pattern itself along a downward tree path starting from the root. This
gives a search time proportional to the pattern length, instead of a logarithmic
bound as it occurred for suffix arrays. Hence searching for the occ occurrences
of a pattern P [1, p] as a substring of ∆’s texts requires O(p log |Σ| + occ) time.
Inserting a new text T [1, m] into ∆ or deleting an indexed text from ∆ takes
O(m log |Σ|) time. The structure of a suffix tree is rich of information so that
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Fig. 2. (a) The suffix tree for string T = “abababbc”. We have that node v spells
out the string ‘abab’. The substrings are represented by triples to occupy constant
space, each internal node stores the length of its associated string, and each leaf
stores the starting position of its corresponding suffix. For our convenience, we
illustrate in (b) the suffix tree showed in (a) by explicitly writing down the string
T [i, j] represented by the triple (T, i, j). The endmarker # is not shown. Reading
the leaves rightward we get the suffix array of T .

statistics on text substrings [15] and numerous types of complex queries [88,148]
can be efficiently implemented.

Since the suffix tree is a powerful data structure, it would seem appropriate
to use it in external memory. To our surprise, however, suffix trees loose their
good searching and updating worst-case performance when used for indexing
large text collections that do not fit into internal memory. This is due to the
following reasons:

a. Suffix trees have an unbalanced topology that is text-dependent because their
internal nodes are in correspondence to some repeated substrings. Conse-
quently, these trees inevitably inherit the drawbacks pointed out in scien-
tific literature with regard to paging unbalanced trees in external memory.
There are some good average-case solutions to this problem that group Θ(B)
nodes per page under node insertions only [109, Sect.6.2.4] (deletions make
the analysis extremely difficult [182]), but they cannot avoid storing a down-
ward path of k nodes in Ω(k) distinct pages in the worst case.

b. Since the outdegree of a node can be Θ(|Σ|), its pointers to children might
not fit into O(1) disk pages so they would have to be stored in a separate
B-tree. This causes an O(logB |Σ|) disk access overhead for each branch out
of a node both in searching and updating operations.

c. Branching from a node to one of its children requires further disk accesses
in order to retrieve the disk pages containing the substring that labels the
traversed arc.

d. Updating suffix trees under string insertions or deletions [10,89] requires
the insertion or deletion of some nodes in their unbalanced structure. This
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operation inevitably relies on merging and splitting disk pages in order to
occupy Θ(N

B ) of them. This approach is very expensive: splitting or merging
a disk page can take O(B|Σ|) disk accesses because Θ(B) nodes can move
from one page to another. The Θ(|Σ|) suffix links leading to each moved
node must be redirected and they can be contained in different pages.

Hence we can conclude that, if the text collection ∆ is stored on disk, the
search for a pattern P [1, p] as a substring of ∆’s texts takes O(p logB |Σ|+ occ)
worst-case disk accesses (according to Points a–c). Inserting an m-length text
in ∆ or deleting an m-length text from ∆ takes O(mB|Σ|) disk accesses in the
worst-case (there can be Θ(m) page splits or merges, according to point (d)).

From the point of view of average-case analysis, suffix tree and compacted
trie performances in external memory are heuristic and usually confirmed by
experimentation [14,132,144,59,13]. The best result to date is the Compact PAT-
tree [49]. It is a succinct representation of the (binary) Patricia tree [137], it
occupies about 5 bytes per suffix and requires about 5 disk accesses to search
for a pattern in a text collection of 100Mb. The paging strategy proposed to
store the Compact PAT-tree on disk is a heuristic that achieves only 40% page
occupancy and slow update performance [49]. From the theoretical point of view,
pattern searches require O( h√

p + logp N) I/Os, where h is the Patricia tree’s

height; inserting or deleting a text in ∆ costs at least as searching for all of its
suffixes individually. Therefore this solution is attractive only in practice and for
static textual archives. Another interesting implementation of suffix trees has
been proposed in [112]. Here the space occupancy has been confined between 10
and 20 bytes per text suffix, assuming a text shorter than 227 characters.

3.2 Hybrid data structures

Although suffix arrays and compacted tries present good properties, none of
them is explicitly designed to work on a hierarchy of memory levels. The simple
paging heuristics shown above are not acceptable when dealing with large text
collections which extensively and randomly access the external storage devices
for both searching or updating operations. This is the reason why various re-
searchers have tried to properly combine these two approaches in the light of the
characteristics of the current hierarchy of memory levels. The result is a family
of hybrid data structures which can be divided into two large subclasses.

One subclass contains data structures that exploit the no longer negligible
size of the internal memory of current computers by keeping two indexing levels:
one level consists of a compacted trie (or a variant of it) built on a subset of the
text suffixes and stored in internal memory (previously called supra-index); the
other level is just a plain suffix array built over all the suffixes of the indexed
text. The trie is used to route the search on a small portion of the suffix array,
by exploiting the efficient random-access time of internal memory; an external-
memory binary search is subsequently performed on a restricted part of the suffix
array, so identified, thus requiring a reduced number of disk accesses. Various ap-
proaches to suffix sampling have been introduced in the literature [50,102,144,11],
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as well various trie coding methods have been employed to stuff as much suffixes
as possible into internal memory [23,13,59,105]. In all these cases the aim has
been to balance the efficient search performance of compacted tries with the
small space occupancy of suffix arrays, taking into account the limited space
available into internal memory. The result is that: (1) the search time is faster
than in suffix arrays (see e.g. [23,11]) but it is yet not optimal because of the
binary search on disk, (2) the updates are slow because of the external-memory
suffix array, and (3) slightly more space is needed because of the internal-memory
trie.

The second subclass of hybrid data structures has been obtained by properly
combining the B-tree data structure [51] with the effective routing properties of
suffix arrays, tries or their variants. An example is the Prefix B-tree [28] that
explicitly stores prefixes of the indexed suffixes (or indexed strings) as routing
information (they are called separators) into its internal nodes. This design choice
poses some algorithmic constraints. In fact the updates of Prefix B-trees are
complex because of the presence of arbitrarily long separators, which require
recalculations and possibly trigger new expansions/contractions of the B-tree
nodes. Various works have investigated the splitting of Prefix B-tree nodes when
dealing with variable length keys [28,115] but all of them have been faced with
the problem of choosing a proper splitting separator. For these reasons, while
B-trees and their basic variants are among the most used data structures for
primary key retrieval [51,109], Prefix B-trees are not a common choice as full-
text indices because their performance is known to be not efficient enough when
dealing with arbitrarily long keys or highly dynamic environments.

3.3 The string B-tree data structure

The String B-tree [71] is a hybrid data structure introduced to overcome the
limitations and drawbacks of Prefix B-trees. The key idea is to plug a Patricia
tree [137] into the nodes of the B-tree, thus providing a routing tool that effi-
ciently drives the subsequent searches and, more importantly, occupies a space
proportional to the number of indexed strings instead of their total length. The
String B-tree achieves optimal search bounds (in the case of an unbounded al-
phabet) and attractive update performance. In practice it requires a negligible,
guaranteed, number of disk accesses to search for an arbitrary pattern string in
a large text collection, independent of the character distribution. We now recall
the main ideas underlying the String B-tree data structure. For more theoretical
details we refer the reader to [71], for a practical analysis we refer to [70] and
Section 3.4.

String B-trees are similar to B+-trees [51], the keys are pointers to the strings
in SUF (∆) (i.e. to suffixes of ∆’s strings), they reside in the leaves and some
copies of these keys are stored in the internal nodes for routing the subsequent
traversals. The order between any two keys is the lexicographic order among
the corresponding pointed strings. The novelty of the String B-tree is that the
keys in each node are not explicitly stored, so that they may be of arbitrary
length. Only the string pointers are kept into the nodes, organized by means
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of a Patricia tree [137] which ensures small overhead in routing string searches
or updates, and occupies space proportional to the number of indexed strings
rather than to their total length.

We denote by SBT∆ the string B-tree built on the text collection ∆, and we
adopt two conventions: there is no distinction between a key and its correspond-
ing pointed string; each disk page can contain up to 2b keys, where b = Θ(B)
is a parameter depending on the actual space occupancy of a node (this will
be discussed in Section 3.4). In detail, the strings of SUF (∆) are distributed
among the String B-tree nodes as shown in Figure 3. SUF (∆) is partitioned
into groups of at most 2b strings each (except the last group which may contain
fewer strings) and every group is stored into a leaf of SBT∆ in such a way that
the left-to-right scanning of these leaves gives the ordered set SUF (∆) (i.e. the
suffix array of ∆). Each internal node π has n(π) children, with b

2 ≤ n(π) ≤ b
(except the root which has from 2 to b children). Node π also stores the string
set Sπ formed by copying the leftmost and the rightmost strings contained in
each of its children. As a result, set Sπ consists of 2n(π) strings, node π has
n(π) = Θ(B) children, and thus the height of SBT∆ is O(logB N) where N is
the total length of ∆’s strings, or equivalently, the cardinality of SUF (∆).

The main advantage of String B-trees is that they support the standard
B-tree operations, now, on arbitrary long keys. Since the String B-tree leaves
form a suffix array on SUF (∆), the search for a pattern string P [1, p] in SBT∆

must identify foremost the lexicographic position of P among the text suffixes
in SUF (∆), and thus, among the text pointers in the String B-tree leaves. Once
this position is known, all the occurrences of P as a substring of ∆’s strings
are given by the consecutive pointers to text suffixes which start from that
position and have P as a prefix (refer to the observation on suffix arrays, in
Section 3). Their retrieval takes O((p/B)occ) I/Os, in case of a brute-force match
between the pattern P and the checked suffixes; or the optimal O(occ/B) I/Os, if
some additional information about the longest-common-prefix length shared by
adjacent suffixes is kept into each String B-tree leaf. In the example of Figure 3
the search for the pattern P = “CT ′′ traces a downward path of String B-tree
nodes and identifies the lexicographic position of P into the fourth String B-tree
leaf (from the left) and before the 42th text suffix. The pattern occurrences are
then retrieved by scanning the String B-tree leaves from that position until the
32th text suffix is encountered, because it is not prefixed by P . The text positions
{42, 20, 13, 24, 16} denote the five occurrences of P as a substring of ∆’s texts.

Therefore the efficient implementation of string searches in String B-trees
boils down to the efficient routing of the pattern search among the String B-tree
nodes. In this respect it is clear that the way a string set Sπ, in each traversed
node π, is organized plays a crucial role. The innovative idea in String B-trees
is to use a Patricia tree PTπ to organize the string pointers in Sπ [137]. Patricia
trees preserve the searching power and properties of compacted tries, although
in a reduced space occupancy. In fact PTπ is a simplified trie in which each
arc label is replaced by only its first character. See Figure 4 for an illustrative
example.
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When the String B-tree is traversed downward starting from the root, the
traversal is routed by using the Patricia tree PTπ stored in each visited node
π. The goal of PTπ is to help finding the lexicographic position of the searched
pattern P in the ordered set Sπ . This search is a little bit more complicated than
the one in classical tries (and suffix trees), because of the presence of only one
character per arc label, and in fact consists of two stages:

– Trace a downward path in PTπ to locate a leaf l which points to an interesting
string of Sπ . This string does not necessarily identify P ’s position in Sπ

(which is our goal), but it provides enough information to find that position
in the second stage (see Figure 4). The retrieval of the interesting leaf l
is done by traversing PTπ from the root and comparing the characters of
P with the single characters which label the traversed arcs until a leaf is
reached or no further branching is possible (in this case, choose l to be any
descendant leaf from the last traversed node).

– Compare the string pointed by l with P in order to determine their longest
common prefix. A useful property holds [71]: the leaf l stores one of the
strings in Sπ that share the longest common prefix with P . The length ℓ
of this common prefix and the mismatch character P [ℓ + 1] are used in two
ways: first to determine the shallowest ancestor of l spelling out a string
longer than ℓ; and then, to select the leaf descending from that ancestor
which identifies the lexicographic position of P in Sπ .

An illustrative example of a search in a Patricia tree is shown in Figure 4 for a
pattern P = “GCACGCAC′′. The leaf l found after the first stage is the second
one from the right. In the second stage, the algorithm first computes ℓ = 2 and
P [ℓ + 1] = A; then, it proceeds along the leftmost path descending from the
node u, since the 3rd character on the arc leading to u (i.e. the mismatch G) is
grater than the corresponding pattern character A. The position reached by this
two-stage process is indicated in Figure 4, and results the correct lexicographic
position of P among Sπ’s strings.

We remark here that PTπ requires space linear in the number of strings of
Sπ, therefore the space usage is independent of their total length. Consequently,
the number of strings in Sπ can be properly chosen in order to be able to fit PTπ

in the disk page allocated for π. An additional nice property of PTπ is that it
allows to find the lexicographic position of P in Sπ by exploiting the information
available in π’s page and by fully comparing P with just one of the strings in Sπ.
This clearly allows to reduce the number of disk accesses needed in the routing
step. By counting the number of disk accesses required for searching P [1, p] in
the strings of ∆, and recalling that ∆’s strings have overall length N , we get
the I/O-bound O( p

B logB N). In fact, SBT∆ has height O(logB N), and at each
traversed node π we may need to fully compare P against one string of Sπ thus
taking O( p

B + 1) disk accesses.
A further refinement to this idea is possible, thought, by observing that we

do not necessarily need to compare the two strings, i.e. P and the candidate
string of Sπ, starting from their first character but we can take advantage of the
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comparisons executed on the ancestors of π, thus skipping some character com-
parisons and reducing the number of disk accesses. An incremental accounting
strategy allows to prove that O( p

B + logB N) disk accesses are indeed sufficient,
and this bound is optimal in the case of an unbounded alphabet. A more com-
plete analysis and description of the search and update operations is given in [71]
where it is formally proved the following:

Theorem 1. String B-trees support the search for all the occ occurrences of
an arbitrary pattern P [1, p] in the strings of a set ∆ taking O(p+occ

B + logB N)
disk accesses, where N is the overall length of ∆’s strings. The insertion or the
deletion of an m-length string in/from the set ∆ takes O(m logB(N + m)) disk
accesses. The required space is Θ(N

B ) disk pages.

As a corollary, we get a result which points out the String B-tree as an
effective data structure also for dictionary applications.

Corollary 1. String B-trees support the search for all the occ occurrences of
an arbitrary pattern P [1, p] as a prefix of the K strings in a set ∆ taking
O(p+occ

B + logB K) disk accesses. The insertion or the deletion of an m-length
string in/from the set ∆ takes O(m

B + logB K) disk accesses. The space usage of

the String B-tree is Θ(K
B ) disk pages, whereas the space occupied by the string

set ∆ is Θ(N
B ) disk pages.

Some authors have successfully used String B-trees in other settings: multi-
dimensional prefix-string queries [97], conjunctive boolean queries on two sub-
strings [72], dictionary matching problems [73], distributed search engines [74],
indexing of XML texts [54]. All of these applications show the flexibility of this
data structure, its efficiency in external memory, and foretell engineered im-
plementations because up to now String B-trees have been confined mainly to
the theoretical realm perhaps because of their space occupancy: the best known
implementation uses about 12 bytes per indexed suffix [70]. Given this bottle-
neck, less I/O-efficient but space cheaper data structures have been preferred in
practice (e.g. supra-indexes [23]). In the next section we try to overcome this
limitation by proposing a novel engineered version of String B-trees suitable for
practical implementations.

3.4 Engineering the String B-tree

String B-trees have the characteristics that their height decreases exponentially
as b’s value increases (with fixed N). The value of b is strictly related to the
number of strings contained in each node π because b ≤ |Sπ | ≤ 2b. If the disk
page size B increases, we can store more suffixes in Sπ . However, since B is
typically chosen to be proportional to the size of a disk page, we need a technique
that maximizes |Sπ| for a fixed disk page size B.

The space occupancy of a String B-tree node π is evaluated as the sum of
three quantities:
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1. The amount of auxiliary and bookkeeping information necessary to node π.
This is practically negligible and, hereafter, it will not be accounted for.

2. The amount of space needed to store the pointers to the children of π. This
quantity is absent for the leaves; in the case of internal nodes, usually a
4-byte pointer suffices.

3. The amount of space required to store the pointers to the strings in Sπ

and the associated machinery PTπ. This space is highly implementation
dependent, so deserves an accurate discussion.

Let us therefore concentrate on the amount of space required to store Sπ

and PTπ. This is determined by three kinds of information: (i) the Patricia tree
topology, (ii) the integer values kept into the internal nodes of PTπ (denoted by
len), and (iii) the pointers to the strings in Sπ. The näıve approach to implement
(i–iii) is to use explicit pointers to represent the parent-child relationships in PTπ

and the strings in Sπ, and allocate 4 bytes for the len values. Although simple
and efficient in supporting search and update operations, this implementation
induces an unacceptable space occupancy of about 24 bytes per string of Sπ !
The literature about space-efficient implementations of Patricia trees is huge but
some “pruning” of known results can be done according to the features of our
trie encoding problem. Hash-based representation of tries [58], although elegant
and succinct, can be discarded because they do not have guaranteed performance
in time and space, and they are not better than classical tries on small string
sets [5,31], as it occurs in our Sπ’s sets. List or array-based implementations of
Patricia trees adopting path and/or level compression strategies [13,12,157] are
space consuming and effective mainly on random data.

More appealing for our purposes is a recent line of research pioneered by [96]
and extended by other authors [143,144,49,107,117] to the succinct encoding of
Patricia trees. Their main idea is to succinctly encode the Patricia tree topology
and then use some other data structures to properly encode the other informa-
tion, like the string pointers (kept into the leaves) and the len values (kept into
the internal nodes). The general policy is therefore to handle the data and the
tree structure separately. This enables to compress the plain data using any of
the known methods (see e.g. [188]) and independently find an efficient coding
method for the tree structure irrespective of the form and contents of the data
items stored in its nodes and leaves.

In the original implementation of String B-trees [70], the shape of PTπ was
succinctly encoded via two operations, called compress and uncompress. These
operations allow to go from a Patricia tree to a binary sequence, and vice versa,
by means of a preorder traversal of PTπ. Although space efficient and simple,
this encoding is CPU-intensive to be updated or searched, so that a small page
size of B = 1 kilobytes was chosen in [70] to balance the CPU-cost of node
compression/uncompression and the I/O-cost of the update operations (see [70]
for details). Here we propose a novel encoding scheme that surprisingly throws
away the Patricia tree topology, keeps just the string pointers and the len values,
and is still able to support pattern searches in a constant number of I/Os per
visited String B-tree node. As a result, the asymptotic I/O-bounds stated in
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Theorem 1 still hold with a significant space improvement in the constants hidden
in the big-Oh notation.

The starting point is the beautiful result of [69] that we briefly recall here. Let
us be given a lexicographically ordered array of string pointers, called SP , and
the array of longest-common-prefixes shared by strings adjacent in SP , called
Lcp. We can look at SP and Lcp as the sequence of string pointers and len
values encountered in an inorder traversal of the Patricia tree PTπ stored into a
given String B-tree node π. Now, let us assume that we wish to route the search
for a pattern P [1, p] through node π, we then need to find the lexicographic
position of P in SP since it indexes Sπ. We might implement that search via the
classical binary search procedure on suffix arrays within a logarithmic number
of I/Os (see Section 3.1). The result in [69] shows instead that it is enough to
execute only one string access, few more Θ(p + k) bit comparisons and one full
scan of the arrays Lcp and SP . Of course this new algorithm is unaffordable
on large arrays, but this is not our context of application: the string set Sπ

actually consists of few thousands of items (stored in one disk page), and the
arrays SP and Lcp reside in memory when the search is performed (i.e. the
disk page has been fetched). Hence the search is I/O-cheap in that it requires
just one sequential string access, it is CPU-effective because the array-scan can
benefit from the reading-ahead policy of the internal cache, and is space efficient
because it avoids the storage of PTπ’s topology.

Let us therefore detail the search algorithm which assumes a binary pattern
P and consists of two phases (see [69] for the uneasy proof of correctness). In
the first phase, the algorithm scans rightward the array SP and inductively
keeps x as the position of P in this array (initially x = 0). At a generic step i
it computes ℓ = Lcp[i], as the mismatching position between the two adjacent
strings SP [i] and SP [i + 1]. Notice that the ℓth bit of the string SP [i] is surely
0, whereas the ℓth bit of the string SP [i+ 1] is surely 1 because they are binary
and lexicographically ordered. Hence the algorithm sets x = i+1 and increments
i if P [ℓ] = 1; otherwise (i.e. P [ℓ] = 0), it leaves x unchanged and increments i
until it meets an index i such that Lcp[i] < ℓ. Actually, in this latter case the
algorithm is jumping all the succeeding strings which have the ℓth bit set to 1
(since P [ℓ] = 0). The first phase ends when i reaches the end of SP ; it is possible
to prove that SP [x] is one of the strings in SP sharing the longest common prefix
with P . In the illustrative example of Figure 5, we have P = “GCACGCAC′′

and coded its characters in binary; the first phase ends by computing x = 4. The
second phase of the search algorithm initiates by computing the length ℓ′ of the
longest common prefix between P and the candidate string SP [x]. If SP [x] = P
then it stops, otherwise the algorithm starts from position x a backward scanning
of SP if P [ℓ′ + 1] = 0 or a forward scanning if P [ℓ′ + 1] = 1. This scan searches
for the lexicographic position of P in SP and proceeds until is met the position
x′ such that Lcp[x′] < ℓ′. The searched position lies between the two strings
SP [x′] and SP [x′ + 1]. In the example of Figure 5, it is ℓ′ = 4 (in bits) and
P [5] = 0 (the first bit of A’s binary code); hence SP is scanned backward from



www.manaraa.com

29

SP [4] for just one step since Lcp[3] = 0 < 4 = ℓ′. This is the correct position of
P among the strings indexed by SP .

Notice that the algorithm needs to access the disk just for fetching the string
SP [x] and comparing it against P . Hence O(p/B) I/Os suffice to route P through
the String B-tree node π. An incremental accounting strategy, as the one devised
in [71], allows to prove that we can skip some character comparisons and therefore
require O(p+occ

B + logB N) I/Os to search for the occ occurrences of a pattern
P [1, p] as a substring of ∆’s strings. Preliminary experiments have shown that
searching few thousands of strings via this approach needs about 200µs, which
is negligible compared to the 5.000µs required by a single I/O on modern disks.
Furthermore, the incremental search allows sometimes to avoid the I/Os needed
to access SP [x] !

Some improvements to this idea are still possible both in time and space.
First, we can reduce the CPU-time of search and update operations by adopting
a sort of supra-index on SP defined as follows. We decompose the array SP
(and hence Lcp) into sub-arrays of size Θ(log2 |SP |). The rightmost string of
each subarray is stored in a pointer-based Patricia tree. This way, the (sampled)
Patricia tree is used to determine the subarray containing the position of the
searched pattern; then the search procedure above is applied to that subarray
to find the correct position of P into it. The overall time complexity is O(p)
to traverse the Patricia tree, and O(p + log2 |SP |) to explore the reached sub-
array. Notice also that only two strings in SP are accessed on disk. The data
structure is dynamic and every insertion or deletion of an m-length string takes
O(m + log2 |SP |) time and only two string accesses to the disk. The resulting
data structure turns out to be simple, its construction from scratch is fast and
thus split/merge operations on String B-tree nodes should be effective if PTπ is
implemented in this way.

We point out that due to the sequential access to the array Lcp, a further
space saving is possible. We can compactly encode the entries of array Lcp by
representing only their differences. Namely, we use a novel array Skip in which
each value denotes the difference between two consecutive Lcp’s entries (i.e.
Skip[i] = Lcp[i]−Lcp[i− 1], see Figure 5). Various experimental studies on the
distribution of the Skips over standard text collections have shown that most
of them (about 90% [177]) are small and thus they are suitably represented via
variable-length codes [49,132]. We suggest the use of the continuation bit code,
described in Section 2, because of two facts: the string sampling at the internal
nodes of SBT∆ and the results in [177] drives us to conjecture small skips and
thus one byte coding for them; furthermore, this coding scheme is simple to be
programmed, induces byte-aligned codes and hence it is CPU efficient.

We conclude this section by observing that up to now we assumed the text
collection ∆ to be fixed. In a real-life context, we should expect that new texts
are added to the collection and old texts are removed from it. While handling
deletions is not really a problem as we have a plethora of tools inherited from
standard B-trees, implementing the addition of a new text requires decisely new
techniques. This asymmetry between deletion and insertion is better understood
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if we observe that the insertion of a new text T [1, m] into ∆ requires the insertion
of all of its m suffixes {T [1, m], T [2, m], . . . , T [m, m]} into the lexicographically
ordered set SUF (∆). Consequently, the dominant cost is due to the comparison
of all characters in each text suffix that may sum up to Θ(m2). Since T can
be as large as m = 106 characters (or even more), the rescanning of the text
characters might be a computational bottleneck. On the other hand, the deletion
of a text T [1, m] from ∆ consists of a sequence of m standard deletions of T ’s
suffix pointers, and hence can exploit standard B-tree techniques.

The approach proposed in [71] to avoid the “rescanning” in text insertion is
mainly theoretical in its flavor and considers an augmented String B-tree where
some pointers are added to its leaves. The counterpart for this I/O improvement
is that a larger space occupancy is needed and, when rebalancing the String B-
tree, the redirection of some of these additional pointers may cause the execution
of random I/Os. Therefore, it is questionable if this approach is really attractive
from a practical point of view. Starting from these considerations [70] proposed
an alternative approach based on a batched insertion of the m suffixes of T .
This approach exploits the LRU buffering strategy of the underlying operating
system and proves effective in the case of a large m. In the case of a small m a
different approach must be adopted which is based on the suffix-array merging
procedure presented in [84]: a suffix array SA is built for T , together with its Lcp
array; the suffix array SA∆ on the suffixes in SUF (∆) is instead derived from
the leaves of SBT∆ within O(N/B) I/Os. The merge of SA and SA∆ (and their
corresponding Lcp arrays) gives the new set of String B-tree leaves, the internal
nodes are constructed within O(N/B) I/Os via the simple approach devised in
Section 3.3. Even if the merging of the two suffix arrays can be dramatically
slow in theory, since every suffix comparison might require one disk access, the
character distribution of real text collections makes the Lcp arrays very helpful
and allows to solve in practice most of the suffix comparisons without accessing
the disk. A throughtful sperimentation of these approaches is still needed to
validate such empirical considerations.

3.5 String B-tree construction

The efficient construction of full-text indexes on very large text collections is a
hot topic: “We have seen many papers in which the index simply ‘is’, without
discussion of how it was created. But for an indexing scheme to be useful it
must be possible for the index to be constructed in a reasonable amount of time,
.....” [193]. The construction phase may be, in fact, a bottleneck that can prevent
these powerful indexing tools to be used even in medium-scale applications.
Known construction algorithms are very fast when employed on textual data that
fit in the internal memory of computers [121,165,112,124] but their performance
immediately degrades when the text size becomes so large that the texts must
be arranged on (slow) external storage devices. In the previous section we have
addressed the problem of updating the String B-tree under the insertion/deletion
of a single text. Obviously those algorithms cannot be adopted to construct from
scratch the String B-tree over a largely populated text collection because they
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would incur in an enormous amount of random I/Os. In this section we describe
first an efficient algorithm to build the suffix array SA∆ for a text collection ∆
of size N , and then present a simple algorithm which derives the String B-tree
SBT∆ from this array in O(N/B) I/Os. For further theoretical and experimental
results on this interesting topic we refer the reader to [66,55,165,84].

How to build SA∆. As shown in [55], the most attractive algorithm for
building large suffix arrays is the one proposed in [84] because it requires only
4 bytes of working space per indexed suffix, it accesses the disk mostly in a
sequential manner and it is very simple to be programmed. For the simplicity of
presentation, let us assume to concatenate all the texts in ∆ into just one single
long text T of length N , and let us concentrate on the construction of the suffix
array SAT of T . The transformation from SAT to SA∆ is easy and left to the
reader as an exercise.

The algorithm computes incrementally the suffix array SAT in Θ(N/M)
stages. Let ℓ < 1 be a positive constant fixed below, and assume to set a param-
eter m = ℓM which, for the sake of presentation, divides N . This parameter will
denote the size of the text pieces loaded in memory at each stage.

The algorithm maintains at each stage the following invariant: At the begin-
ning of stage h, with h = 1, 2, . . . , N/m, the algorithm has stored on the disk an
array SAext containing the sequence of the first (h − 1)m suffixes of T ordered
lexicographically and represented via their starting positions in T .

During the hth stage, the algorithm incrementally updates SAext by properly
inserting into it the text suffixes which start in the substring T [(h−1)m+1, hm].
This preserves the invariant above, thus ensuring that after all the N/m stages,
it is SAext = SAT . We are therefore left with showing how the generic hth stage
works.

In the hth stage, the text substring T [(h−1)m+1, hm] is loaded into internal
memory, and the suffix array SAint containing only the suffixes starting in that
text substring is built. Then, SAint is merged with the current SAext in two
steps with the help of a counter array C[1, m + 1]:

1. The text T is scanned rightwards and the lexicographic position pi of each
text suffix T [i, N ], with 1 ≤ i ≤ (h−1)m, is determined in SAint via a binary
search. The entry C[pi] is then incremented by one unit in order to record
the fact that T [i, N ] lexicographically lies between the SAint[pi − 1]-th and
the SAint[pi]-th suffix of T .

2. The information kept in the array C is employed to quickly merge SAint

with SAext: entry C[j] indicates how many consecutive suffixes in SAext

follow the SAint[j − 1]-th text suffix and precede the SAint[j]-th text suffix.
This implies that a simple disk scan of SAext is sufficient to perform such a
merging process.

At the end of these two steps, the invariant on SAext has been properly
preserved so that h can be incremented and the next stage can start correctly.
Some comments are in order at this point. It is clear that the algorithm proceeds
by mainly executing two disk scans: one is performed to load the text piece
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T [(h − 1)m + 1, hm] in internal memory, the other disk scan is performed to
merge SAint and SAext via the counter array C. However, the algorithm might
incur in many I/Os: either when SAint is built or when the lexicographic position
pi of each text suffix T [i, N ] within SAint has to be determined. In both these two
cases, we may need to compare a pair of text suffixes which share a long prefix not
entirely available in internal memory (i.e., it extends beyond T [(h−1)m+1, hm]).
In the pathological case T = aN , the comparison between two text suffixes takes
O(N/M) bulk I/Os so that: O(N log2 m) bulk I/Os are needed to build SAint;
the computation of C takes O(hN log2 m) bulk I/Os; whereas O(h) bulk I/Os are
needed to merge SAint with SAext. No random I/Os are executed, and thus the
global number of bulk I/Os is O((N3 log2 M)/M2). The total space occupancy
is 4N bytes for SAext and 8m bytes for both C and SAint; plus m bytes to keep
T [(h− 1)m+1, hm] in internal memory (the value of ℓ is derived consequently).
The merging step can be easily implemented using some extra space (indeed
additional 4N bytes are sufficient), or by employing just the space allocated for
SAint and SAext via a more tricky implementation.

Since the worst-case number of total I/Os is cubic, a purely theoretical anal-
ysis would classify this algorithm not much interesting. But there are some con-
siderations that are crucial to shed new light on it, and look at this algorithm
from a different perspective. First of all, we must observe that, in practical situa-
tions, it is very reasonable to assume that each suffix comparison finds in internal
memory all the (usually, constant number of) characters needed to compare the
two involved suffixes. Consequently, the practical behavior is more reasonably
described by the formula: O(N2/M2) bulk I/Os. Additionally, in the analysis
above all I/Os are sequential and the actual number of random seeks is O(N/M)
(i.e., at most a constant number per stage). Consequently, the algorithm takes
fully advantage of the large bandwidth of current disks and of the high CPU-
speed of the processors [162,164]. Moreover, the reduced working space facilitates
the prefetching and caching policies of the underlying operating system and fi-
nally, a careful look to the algebraic calculations shows that the constants hidden
in the big-Oh notation are very small. A recent result [55] has also shown how to
make it no longer questionable at theoretical eyes by proposing a modification
that achieves efficient performance in the worst case.

From SA∆ to SBT∆. The construction of SA∆ can be coupled with the
computation of the array Lcp∆ containing the sequence of longest-common-
prefix lengths (lcp) between any pair of adjacent suffixes. Given these two arrays,
the String B-tree for the text collection ∆ can be easily derived proceeding in a
bottom-up fashion. We split SA∆ into groups of about 2b suffix pointers each (a
similar splitting is adopted on the array Lcp∆) and use them to form the leaves
of the String B-tree. That requires scanning SA∆ and Lcp∆ once. For each leaf
π we have its string set Sπ and its sequence of lcps, so that the construction of
the Patricia tree PTπ takes linear time and no I/Os.

After the leaf level of the String B-tree has been constructed, we proceed to
the next higher level by determining new string and lcp sequences. For this, we
scan rightward the leaf level and take the leftmost string L(π) and the rightmost
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string R(π) from each leaf π. This gives the new string sequence whose length
is a factor Θ(1/B) smaller than the sequence of strings stored in the leaf level.
Each pair of adjacent strings is either a L(π)/R(π) pair or a R(π)/L(π′) pair
(derived from consecutive leaves π and π′). In the former case, the lcp of the
two strings is obtained by taking the minimum of all the lcps stored in π; in the
latter case, the lcp is directly available in the array Lcp∆ since R(π) and L(π′)
are contiguous there. After that the two new sequences of strings and lcps have
been constructed, we repeat the partitioning process above thus forming a new
level of internal nodes of the String B-tree. The process continues for O(logB N)
iterations until the string sequence has length smaller than 2b; in that case
the root of the String B-tree is formed and the construction process stopped.
The implementation is quite standard and not fully detailed here. Preliminary
experiments [70] have shown that the time taken to build a String B-tree from
its suffix array is negligible with respect to the time taken for the construction
of the suffix array itself. Hence we refer the reader to [55] for the latter timings.

We conclude this section by observing that if we aim for optimal I/O-bounds
then we have to resort a suffix tree construction method [66] explicitly designed
to work in external memory. The algorithm is too much sophisticated to be
detailed, we therefore refer the reader to the corresponding literature and, just,
point out here that the two arrays SA∆ and Lcp∆ can be obtained from the
suffix tree by means of an inorder traversal. It can be shown that all these steps
require sorting and sequential disk-scan procedures, thus accounting for overall
O((N/B) logM/B(N/B)) I/Os [66].

3.6 String vs suffix sorting

The construction of full-text indexes involves the sorting of the suffixes of the
indexed text collection. Since a suffix is a string of arbitrary length, we would be
driven to conclude that suffix sorting and string sorting are “similar” problems.
This is not true because, intuitively, the suffixes participating to the sorting
process share so long substrings that some I/Os may be possibly saved when
comparing them, and indeed this saving can be achieved as shown theoretically
in [66]. Conversely [17] showed that sorting strings on disk is not nearly as simple
as it is in internal memory, and introduced a bunch of sophisticated, determinis-
tic string-sorting algorithms which achieve I/O-optimality under some conditions
on the string-comparison model. In this section we present a simpler random-
ized algorithm that comes close to the I/O-optimal complexity, and surprisingly
matches the O(N/B) linear I/O-bound under some reasonable conditions on the
problem parameters.

Let K be the number of strings to be sorted, they are arbitrarily long, and let
N be their total length. For the sake of presentation, we introduce the notation
n = N/B, k = K/B and m = M/B. Since algorithms do exist that match the
Ω(K log2 K + N) lower bound for string sorting in the comparison model, it
seems reasonable to expect that the complexity of sorting strings in external
memory is Θ(k logm k + n) I/Os. But any näıve algorithm does not even come
close to meet this I/O-bound. In fact, in internal memory a trie data structure
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suffices to achieve the optimal complexity; whereas in external-memory the use
of the powerful String B-tree achieves O(K logB K +n) I/Os. The problem here
is that strings have variable length and their brute-force comparisons over the
sorting process may induce a lot of I/Os. We aim at speeding up the string
comparisons, and we achieve this goal by shrinking the long strings via an hashing
of some of their pieces. Since hashing does not preserve the lexicographic order,
we will orchestrate the selection of the string pieces to be hashed with a carefully
designed sorting process so that the correct sorted order may be eventually
computed. Details follow, see Figure 6 for the pseudocode of this algorithm.

We illustrate the behavior of the algorithm on a running example and then
sketch a proof of its correctness. Let S be a set of six strings, each of length 10. In
Figure 8 these strings are drawn vertically, divided into pieces of L = 2 characters
each. The hash function used to assign names to the L-pieces is depicted in
Figure 7. We remark that L ≫ 2 log2 K in order to ensure, with high probability,
that the names of the (at most 2K) mismatching L-pieces are different. Our
setting L = 2 is to simplify the presentation.

Figure 8 illustrates the execution of Steps 1–4: from the naming of the L-
pieces to the sorting of the c-strings and finally to the identification of the mis-
matching names. We point out that each c-string in C has actually associated a
pointer to the corresponding S’s string, which is depicted in Figure 8 below every
table; this pointer is exploited in the last Step 8 to derive the sorted permutation
of S from the sorted table T . Looking at Figure 8(iii), we interestingly note that
C is different from the sorted set S (in C the 4th string of S precedes its 5th
string !), and this is due to the fact that the names do not reflect of course the
lexicographic order of their original string pieces. The subsequent steps of the
algorithm are then designed to take care of this apparent disorder by driving the
c-strings to their correctly-ordered positions.

Step 6 builds the logical table T by substituting marked names with their
ranks (assigned in Step 5 and detailed in Figure 7), and the other names with
zeros. Of course this transformation is lossy because we have lost a lot of c-string
characters (e.g. the piece bc which was not marked), nonetheless we will show
below that the canceled characters would have not been compared in sorting
the S’s strings so that their eviction has not impact on the final sorting step.
Figure 9(i-ii) shows how the forward and backward scanning of table T fills some
of its entries that got zeros in Step 6. In particular Step 7(a) does not change
table T , whereas Step 7(b) changes the first two columns. The resulting table T
is finally sorted to produce the correct sequence of string pointers 5,3,1,6,2,4
(Figure 9(iii)).

As far as the I/O-complexity is concerned, we let sort(η, µ) denote the
I/O-cost of sorting η strings of total length µ via multiway Mergesort, actu-
ally sort(η, µ) = O( µ

B logm
µ
B ). Since the string set S is sequentially stored

on disk, Steps 1-2 take O(n) I/Os. Step 3 sorts K c-strings of total length

N ′ = Θ(N(2 log
2

K)
L + K), where the second additive term accounts for those

strings which are shorter than L, thus requiring sort(K, N ′) I/Os. Step 4 marks
two names per c-string, so Step 5 requires sort(2K, 2KL) I/Os. Table T consists



www.manaraa.com

35

of K columns of total length N ′ bits. Hence, the forward and backward scanning
of Step 7 takes O(N ′/B) I/Os. Sorting the columns of table T takes sort(K, N ′)
I/Os in Step 8. Summing up we have

Theorem 2. The randomized algorithm detailed in Figure 6 sorts K strings of
total length N in sort(K, N ′ + 2KL) + n expected I/Os.

By setting L = Θ(logm n log2 K), the cost is O(n + k(logm n)2 log2 K)
I/Os. Moreover if it is K ≤ N/(log2

m n log2 K), i.e. the average string length is
polylogarithmic in n, then the total sorting cost results the optimal O(n) I/Os.

It goes without saying that if one replaces the mismatching names with their
original L-pieces (instead of their ranks), it would still get the correct lexico-
graphic order but it would possibly end up in the same I/O-cost of classical
mergesort: in the worst case, Step 7 expands all entries of T thus resorting to a
string set of size N !

The argument underlying the proof of correctness of this algorithm is non
trivial. The key point is to prove that given any pair of strings in S, the cor-
responding columns of T (i.e. c-strings of C) contain enough information after
Step 7 that the column comparison in Step 8 reflects their correct lexicographic
order. For simplicity we assume to use a perfect hash function so that different
L-pieces get different names in Step 2.

Let α and β be any two c-strings of C and assume that they agree up to the
ith name (included). After C is sorted (Step 3), α and β are possibly separated by
some c-strings which satisfy the following two properties: (1) all these c-strings
agree at least up to their ith name, (2) at least two adjacent c-strings among
them disagree at their (i + 1)th name. According to Step 6 and Property (1),
the columns in T corresponding to α and β will initially get zeros in their first
i entries; according to Step 6 and Property (2) at least two columns between
α’s and β’s ones will get a rank value in their (i + 1)th entry. The leftmost
of these ranks equals the rank of the (i + 1)th name of α; the rightmost of
these ranks equals the rank of the (i + 1)th name of β. After Step 7, the first i
entries of α’s and β’s columns will be filled with equal values; and their (i+1)th
entry will contain two distinct ranks which correctly reflect the two L-pieces
occupying the corresponding positions. Hence the comparison executed in Step 8
between these two columns gives the correct lexicographic order between the two
original strings. Of course this argument holds for any pair of c-strings in C, and
thus overall for all the columns of T . We can then conclude that the string
permutation derived in Step 8 is the correct one.

3.7 Some open problems and future research directions

An important advantage of String B-trees is that they are a variant of B-trees
and consequently most of the technological advances and know-how acquired on
B-trees can be smoothly applied to them. For example, split and merge strate-
gies ensuring good page-fill ratio, node buffering techniques to speed up search
operations, B-tree distribution over multi-disk systems, as well adaptive overflow
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techniques to defer node splitting and B-tree re-organization, can be applied on
String B-trees without any significant modification. Surprisingly enough, there
are no publicly available implementations of the String B-tree, whereas some
softwares are based on it [54,97,110]. The novel ideas presented in this paper
foretell an engineered, publicly available implementation of this data structure.
In particular, it would be worth to design a library for full-text indexing large
text collections based on the String B-tree data structure. This library should
be designed to follow the API of the Berkeley DB [181], thus facilitating its use
in well-established applications. The String B-tree could also be adopted as the
main search engine for genomic databases thus competing with the numerous re-
sults based on suffix trees recently appeared in the literature [88,46,103,133,126].
Another setting where an implementation of the String B-tree could find a suc-
cessful use is the indexing of the tagged structure of an XML document. Recent
results [52,47,4] adopt a Patricia tree or a Suffix tree to solve and/or estimate
the selectivity of structural queries on XML documents. However they are forced
to either summarize the trie structure, in order to fit it into the internal mem-
ory, or to propose disk-paging heuristics, in order to achieve reasonable per-
formance. Unfortunately these proposals [52] forget the advancements in the
string-matching literature and thus inevitably incur into the well-known I/O
bottleneck deeply discussed in Section 3.1. Of course String B-trees might be
successfully used here to manage in an I/O-efficient manner the arbitrary long
XML paths in which an XML document can be parsed, as well provide a better
caching behavior for the in-memory implementations.

The problem of multi-dimensional substring search, i.e. the search for the
simultaneous occurrence of k substrings, deserves some attention. The approach
proposed in [72] provides some insights into the nature of two-dimensional queries,
but what can we say about multi-dimensions ? Can we combine the String B-tree
with some known multi-dimensional data structure [172,86] in order to achieve
guaranteed worst-case bounds ? Or, can we design a full-text index which al-
lows proximity queries between two substrings [120,72] ? More study is worth to
be devoted to this important subject because of its ubiquitous applications to
databases, data mining and search engines.

When dealing with word-based indexes, we addressed the document listing
problem: given a word-based query w find all the documents in the indexed
collection that contain w. Conversely when dealing with full-text indexes, we
addressed the occurrence listing problem: given an arbitrary pattern string P
find all the document positions where P occurs. Although more natural from an
application-specific point of view, the document listing problem has surprisingly
received not much attention from the algorithmic community in the area of full-
text indexes, so that efficient (optimal) solutions are yet missing for many of its
variants. Some papers [127,145] have recently initiated the study of challenging
variations of the document listing problem and solved them via simple and ef-
ficient algorithms. Improving these approaches, as well extending these results
to multiple-pattern queries and to external-memory setting turns out to be a
stimulating direction of research.
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Exact searches are just one side of the coin, probably the tool with the nar-
rowest setting of application ! The design of search engines for approximate
or similarity string searches is becoming more urgent because of the doubt-
less theoretical interest and the numerous applications in the field of genomic
databases, audio/video collections and textual databases, in general. Significant
biological breakthroughs have already been achieved in genome research based
on the analysis of similar genetic sequences, and the algorithmic field is over-
flooding of results in this setting [148]. However most of these similarity-based
or approximate-matching algorithms require the whole scan of the data collec-
tion thus resulting much costly in the presence of a large amount of string data
and user queries. Indexes for approximate, or similarity, searches turn out to
be the holy grail of the Information Retrieval field. Several proposals have ap-
peared in the literature and it would be impossible to comment the specialties
of, or even list, all of them. Just to have an idea, a search for “(approximate OR
similarity) AND (index OR search)” returned on Altavista more than 500,000
matches. To guide ourselves in this jungle of proposals we state the following
consideration: “it is not yet known an index which efficiently routes the search
to the correct positions where an approximate/similar string occurrence lies”.
Most of the research effort has been devoted to design filters: they transform the
approximate/similarity pattern search into another string or geometric query
problem for which efficient data structures are known. The transformation is of
course “not perfect” because it introduces some false positive matches that must
be then filtered out via a (costly) scan-based algorithm. The more filtration is
achieved by the index, the smaller is the part on which the approximate/similar
scan-based search is applied, the faster is the overall algorithmic solution. The
key point therefore relies on the design of a good distance-preserving transfor-
mation.

Some approaches transform the approximate search into a set of q-gram exact
searches, then solved via known full-text indexes [185,40,155,100,160,41]. Other
approaches map a string onto a multi-dimensional integral point via a wavelet-
based transformation and then use multi-dimensional geometric structures to
solve the transformed query [103]. Recently a more sophisticated distance-preserving
transformation has been introduced in [146,53] which maps a string into a binary
vector such that the hamming distance between two of these vectors provides a
provably good approximation of the (block) edit distance between the two orig-
inal strings. This way an efficient approximate nearest-neighbor data structure
(see e.g. [95,113]) can be used to search over these multi-dimensional vectors and
achieve guaranteed good average-case performance. Notice that this solution ap-
plies on whole strings; its practical performance has been tested over genomic
data in [147].

It goes without saying that in the plethora of results about complex pattern
searches a special place is occupied by the solutions based on suffix trees [88,152,126,93].
The suffix-tree structure is well suitable to perform regular expressions, approx-
imate or similarity-based searches but at an average-time cost which may be
exponential in the pattern length or polynomial in the text length [148]. Al-
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though some recent papers [93,171,126] have investigated the effectiveness of
those results onto genomic databases, their usefulness remains limited due to
the I/O bottlenecks incurred by the suffix tree both in the construction phase
and for what concerns their space occupancy (see Section 3.1). Perhaps the adap-
tation of these complex searching algorithms to the String B-tree might turn into
appealing these approaches also from a practical perspective.

As a final remark, we mention that the techniques for designing filtering
indexes are not limited to genomic or textual databases, but they may be used to
extend the search functionalities of relational and object-oriented databases, e.g.
provide a support to approximate string joins [85]. This shows a new interesting
direction of research for pattern-matching tools.

In Section 2.1 we addressed the problem of caching inverted indexes for im-
proving their query time under biased operations. This issue is challenging over
all the indexing schemes and it becomes particularly difficult in the case of full-
text indexes because of their complicated structure. For example, in the case
of a suffix tree its unbalanced tree structure asks for an allocation of its nodes
to disk pages, usually called packing, that optimizes the cache performance for
some pattern of accesses to the tree nodes. This problem has been investigated
in [83] where an algorithm is presented that finds an optimal packing with re-
spect to both the total number of different pages visited in the search and the
number of page faults incurred. It is also shown that finding an optimal packing
which minimizes also the space occupancy is, unfortunately, NP-complete and an
efficient approximation algorithm is presented. These results deal with a static
tree, so that it would be interesting to explore the general situation in which the
distribution of the queries is not known in advance, changes over the time, and
new strings are inserted or deleted from the indexed set. A preliminary insight on
this challenging question has been achieved in [48]. There a novel self-adjusting
full-text index for external memory has been proposed, called SASL, based on
a variant of the Skip List data structure [161]. Usually a skip list is turned
into a self-adjusting data structure by promoting the accessed items up its levels
and demoting certain other items down its levels [62,141,130]. However all of the
known approaches fail to work effectively in an external-memory setting because
they lack locality of reference and thus elicit a lot of random I/Os. A technical
novelty of SASL is a simple randomized demotion strategy that, together with
a doubly-exponential grouping of the skip list levels, guides the demotions and
guarantees locality of reference in all the updating operations; this way, frequent
items get to remain at the highest levels of the skip list with high probability, and
effective I/O-bounds are achieved on expectation both for the search and update
operations. SASL furthermore ensures balancedness without explicit weight on
the data structure; its update algorithms are simple and guarantee a good use
of disk space; in addition, SASL is with high probability no worse than String
B-trees on the search operations but can be significantly better if the sequence
of queries is highly skewed or changes over the time (as most transactions do
in practice). Using SASL over a sequence of m string searches Si1 , Si2 , . . . , Sim

takes O(
∑m

j=1

( |Sij
|

B

)

+
∑n

i=1(ni logB
m
ni

)) expected I/Os, where ni is the num-
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ber of times the string Si is queried. The first term is a lower bound for scanning
the query strings; the second term is the entropy of the query sequence and is
a standard information-theoretic lower bound. This is actually an extension of
the Static Optimality Theorem to external-memory string access [180].

In the last few years a number of models and techniques have been devel-
oped in order to make it easier to reason about multi-level hierarchies [186].
Recently in [80] it has been introduced the elegant cache-oblivious model, that
assumes a two-level view of the computer memory but allows to prove results
for an unknown multilevel memory hierarchy. Cache oblivious algorithms are
designed to achieve good memory performance on all levels of the memory hi-
erarchy, even though they avoid any memory-specific parameterization. Several
basic problems— e.g. matrix multiplication, FFT, sorting [80,36]— have been
solved optimally, as well irregular and dynamic problems have been recently
addressed and solved via efficient cache-oblivious data structures [29,37,30]. In
this research flow turns out challenging the design of a cache oblivious trie be-
cause we feel that it would probably shed new light on the indexing problem: it
is not clear how to guarantee cache obliviousness in a setting where items are
arbitrarily long and the size of the disk page is unknown.

4 Space-time tradeoff in index design

A leitmotiv of the previous sections has been the following: Inverted indexes oc-
cupy less space than full-text indexes but are limited to efficiently support poorer
search operations. This is a frequent statement in text indexing papers and talks,
and it has driven many authors to conclude that the increased query power of
full-text indexes has to be paid by additional storage space. Although this ob-
servation is much frequent and apparently established, it is challenging to ask
ourselves if it is provable that such a tradeoff does exist when designing an index.
In this context compression appears as an attractive tool because it allows not
only to squeeze the space occupancy but also to improve the computing speed.
Indeed “space optimization is closely related to time optimization in a disk mem-
ory” [109] because it allows a better use of the fast and small memory levels close
to CPU (i.e. L1 or L2 caches), reduces the disk accesses, virtually increases the
disk bandwidth, and comes at a negligible cost because of the significant speed
of current CPUs. It is therefore not surprising that IBM has recently installed
on the eServers x330 a novel memory chip (based on the Memory eXpansion
Technology [94]) that stores data in a compressed form thus ensuring a perfor-
mance similar to the one achieved by a server with double real memory but, of
course, at a much lower cost. All these considerations have driven developers to
state that it is more economical to store data in compressed form than uncom-
pressed, so that a renewed interest in compression techniques raised within the
algorithmic and IR communities.

We have already discussed in Section 2 the use of compression in word-based
index design, now we address the impact of compression onto full-text index
design.
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Compression may of course operate at the text level or at the index level, or
both. The simplest approach consists of compressing the text via a lexicographic-
preserving code [92] and then build a suffix array upon it [138]. The improvement
in space occupancy is however negligible since the index is much larger than the
text. A most promising and sophisticated direction was initiated in [143,144]
with the aim of compressing the full-text index itself. These authors showed how
to build a suffix-tree based index on a text T [1, n] within n log2 n + O(n) bits
of storage and support the search for a pattern P [1, p] in O(p + occ) worst-case
time. This result stimulated an active research on succinct encodings of full-text
indexes that ended up with a breakthrough [87] in which it was shown that
a succinct suffix array can be built within Θ(n) bits and can support pattern
searches in O( p

log
2

n + occ logǫ n) time, where ǫ is an arbitrarily small positive

constant. This result has shown that the apparently “random” permutation of
the text suffixes can be succinctly coded in optimal space in the worst case [60].
In [168,169] extensions and variations of this result— e.g. an arbitrary large
alphabet— have been considered.

The above index, however, uses space linear in the size of the indexed collec-
tion and therefore it results not yet competitive against the word-based indexes,
whose space occupancy is usually o(n) (see Section 2). Real text collections are
compressible and thus a full-text index should desiderably exploit the repeti-
tiveness present into them to squeeze its space occupancy via a much succinct
coding of the suffix pointers.

The first step toward the design of a truly compressed full-text index ensur-
ing effective search performance in the worst case has been recently pursued
in [75]. The novelty of this approach resides in the careful combination of the
Burrows-Wheeler compression algorithm [42] with the suffix array data struc-
ture thus designing a sort of compressed suffix array. It is actually a self-indexing
tool because it encapsulates a compressed version of the original text inside the
compressed suffix array. Overall we can say that the index is opportunistic in
that, although no assumption on a particular text distribution is made, it takes
advantage of the compressibility of the indexed text by decreasing the space
occupancy at no significant slowdown in the query performance. More precisely,
the index in [75] occupies O(n Hk(T ))+o(n) bits of storage, where Hk(T ) is the
k-th order empirical entropy of the indexed text T , and supports the search for
an arbitrary pattern P [1, p] as a substring of T in O(p + occ logǫ n) time.

In what follows we sketch the basic ideas underlying the design of this com-
pressed index, hereafter called FM-index [75], and we briefly discuss some exper-
imental results [77,76] on various text collections. These experiments show that
the FM-index is compact (its space occupancy is close to the one achieved by
the best known compressors), it is fast in counting the number of pattern occur-
rences, and the cost of their retrieval is reasonable when they are few (i.e. in case
of a selective query). As a further contribution we briefly mention an interesting
adaptation of the FM-index to word-based indexing, called WFM-index. This
result highlights further on the interplay between compression and index design,
as well the recent plot between word-based and full-text indexes: everything of
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these worlds must be deeply understood in order to perform valuable research
in this topic.

4.1 The Burrows-Wheeler transform

Let T [1, n] denote a text over a finite alphabet Σ. In [42] Burrows and Wheeler
introduced a new compression algorithm based on a reversible transformation,
now called the Burrows-Wheeler Transform (BWT from now on). The BWT
permutes the input text T into a new string that is easier to compress. The BWT
consists of three basic steps (see Figure 10): (1) append to the end of T a special
character # smaller than any other text character; (2) form a logical matrix M
whose rows are the cyclic shifts of the string T# sorted in lexicographic order;
(3) construct the transformed text L by taking the last column of M. Notice that
every column of M, hence also the transformed text L, is a permutation of T#.
In particular the first column of M, call it F , is obtained by lexicographically
sorting the characters of T# (or, equally, the characters of L). The transformed
string L usually contains long runs of identical symbols and therefore can be
efficiently compressed using move-to-front coding, in combination with statistical
coders (see for example [42,68]).

4.2 An opportunistic index

There is a bijective correspondence between the rows of M and the suffixes of T
(see Figure 10); and thus there is a strong relation between the string L and the
suffix array built on T [121]. This is a crucial observation for the design of the
FM-index. We recall below the basic ideas underlying the search operation in
the FM-index, referring for the other technical details to the seminal paper [75].

In order to simplify the presentation, we distinguish between two search tools:
the counting of the number of pattern occurrences in T and the retrieval of
their positions. The counting is implemented by exploiting two nice structural
properties of the matrix M: (i) all suffixes of T prefixed by a pattern P [1, p]
occupy a contiguous set of rows of M (see also Section 3.1); (ii) this set of
rows has starting position first and ending position last, where first is the
lexicographic position of the string P among the ordered rows of M. The value
(last − first + 1) accounts for the total number of pattern occurrences. For
example, in Figure 10 for the pattern P = si we have first = 9 and last = 10
for a total of two occurrences.

The retrieval of the rows first and last is implemented by the procedure
get rows which takes O(p) time in the worst case, working in p constant-time
phases numbered from p to 1 (see the pseudocode in Fig. 11). Each phase pre-
serves the following invariant: At the i-th phase, the parameter “first” points to
the first row of M prefixed by P [i, p] and the parameter “last” points to the last
row of M prefixed by P [i, p]. After the final phase, first and last will delimit
the rows of M containing all the text suffixes prefixed by P .
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The location of a pattern occurrence is found by means of algorithm locate.
Given an index i, locate(i) returns the starting position in T of the suffix cor-
responding to the ith row in M. For example in Figure 10 we have pos(3) = 8
since the third row ippi#mississ corresponds to the suffix T [8, 11] = ippi.
The basic idea for implementing locate(i) is the following. We logically mark a
suitable subset of the rows of M, and for each marked row j we store the start-
ing position pos(j) of its corresponding text suffix. As a result, if locate(i) finds
the ith row marked then it immediately returns its position pos(i); otherwise,
locate uses the so called LF-computation to move to the row corresponding to
the suffix T [pos(i) − 1, n]. Actually, the index of this row can be computed as
LF [i] = C[L[i]] + Occ(L[i], i), where C[c] is the number of occurrences in T
of the characters smaller than c. The LF-computation is iterated v times un-
til we reach a marked row iv for which pos(iv) is available; we can then set
pos(i) = pos(iv)+v. Notice that the LF-computation is considering text suffixes
of increasing length, until the corresponding marked row is encountered.

Given the appealing asymptotical performance and structural properties of
the FM-index, the authors have investigated in [77,76] its practical behavior by
performing an extensive set of experiments on various text collections: 1992 CIA
world fact book (shortly world) of about 2Mb, King James Bible (shortly bible)
of about 4Mb, DNA sequence (shortly e.coli) of about 4Mb, SGML-tagged texts
of AP-news (shortly, ap90) of about 65Mb, the java documentation (shortly,
jdk13) of about 70Mb, and the Canterbury Corpus (shortly, cantrbry) of about
3Mb. On these files they actually experimented two different implementations
of the FM-index:

– A tiny index designed to achieve high compression but supporting only the
counting of the pattern occurrences.

– A fat index designed to support both the counting and the retrieval of the
pattern occurrences.

Both the tiny and the fat indexes consist of a compressed version of the input
text plus some additional information used for pattern searching. In Table 1
we report a comparison among these compressed full-text indexes, gzip (the
standard Unix compressor) and bzip2 (the best known compressor based on the
BWT [176]). These figures have been derived from [76,77].

The experiments show that the tiny index takes significantly less space than
the corresponding gzip-compressed file, and for all files except bible and cantrbry
it takes less space than bzip2. This may appear surprising since bzip2 is also
based on the BWT [176]. The explanation is simply that the FM-index computes
the BWT for the entire file whereas bzip2 splits the input in 900Kb blocks. This
compression improvement is payed in terms of speed; the construction of the tiny
index takes more time than bzip2. The experiments also show that the fat index
takes slightly more space than the corresponding gzip-compressed file. For what
concerns the query time we have that both the tiny and the fat index compute
the number of occurrences of a pattern in a few milliseconds, independently of
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File bible e.coli world cantbry jdk13 ap90

tiny index Compr. ratio 21.09 26.92 19.62 24.02 5.87 22.14
Construction time 2.24 2.19 2.26 2.21 3.43 3.04
Decompression time 0.45 0.49 0.44 0.38 0.42 0.57
Ave. count time 4.3 12.3 4.7 8.1 3.2 5.6

fat index Compr. ratio 32.28 33.61 33.23 46.10 17.02 35.49
Construction time 2.28 2.17 2.33 2.39 3.50 3.10
Decompression time 0.46 0.51 0.46 0.41 0.43 0.59
Ave. count time 1.0 2.3 1.5 2.7 1.3 1.6
Ave. locate time 7.5 7.6 9.4 7.1 21.7 5.3

bzip2 Compression ratio 20.90 26.97 19.79 20.24 7.03 27.36
Compression time 1.16 1.28 1.17 0.89 1.52 1.16
Decompression time 0.39 0.48 0.39 0.31 0.28 0.43

gzip Compr. ratio 29.07 28.00 29.17 26.10 10.79 37.35
Compression time 1.74 10.48 0.87 5.04 0.39 0.97
Decompression time 0.07 0.07 0.06 0.06 0.04 0.07

Table 1. Compression ratio (percentage) and compression/decompression speed
(microseconds per input byte) of tiny and fat indexes compared with those of
gzip (with option -9 for maximum compression) and bzip2. For these com-
pressed indexes we also reports the average time (in milliseconds) for the count

and locate operations. The experiments were run on a machine equipped with
Gnu/Linux Debian 2.2, 600Mhz Pentium III and 1 Gb RAM.

the size of the searched file. Using the fat index one can also compute the position
of each occurrence in a few milliseconds per occurrence.

These experiments show that the FM-index is compact (its space occupancy
is close to the one achieved by the best known compressors), it is fast in counting
the number of pattern occurrences, and the cost of their retrieval is reasonable
when they are few (i.e. in case of a selective query). In addition, the FM-index
allows to trade space occupancy for search time by choosing the amount of aux-
iliary information stored into it. As a result the FM-index combines compression
and full-text indexing: like gzip and bzip2 it encapsulates a compressed version
of the original file; like suffix trees and arrays it allows to search for arbitrary
patterns by looking only at a small portion of the compressed file.

4.3 A word-based opportunistic index

As far as user queries are formulated on arbitrary substrings, the FM-index is an
effective and compact search tool. In the information retrieval setting, thought,
user queries are commonly word-based since they are formulated on entire words
or on their parts, like prefixes or suffixes. In these cases, the FM-index suffers
from the same drawbacks of classical full-text indexes: at any word-based query
formulated on a pattern P , it needs a post-processing phase which aims at filtering
out the occurrences of P which are not word occurrences because they lie entirely
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into a text word. This mainly consists of checking whether an occurrence of
P , found via the get rows operation, is preceded and followed by a non-word
character. In the presence of frequent query-patterns such a filtering process
may be very time consuming, thus slowing down the overall query performance.
This effect is more dramatic when the goal is to count the occurrences of a word,
or when we need to just check whether a word does occur or not into an indexed
text.

Starting for these considerations the FM-index has been enriched with some
additional information concerning with the linguistic structure of the indexed
text. The new data structure, called WFM-index, is actually obtained by building
the FM-index onto a “digested” version of the input text. This digested text,
shortly DT , is a special compressed version of the original text T that allows to
map word-based queries on T onto substring queries on DT .

More precisely, the digested text DT is obtained by compressing the text
T with the byte-aligned and tagged Huffword algorithm described in Section 2
(see [153]). This way DT is a byte sequence which possesses a crucial prop-
erty: Given a word w and its corresponding tagged codeword cw, we have that
w occurs in T iff cw occurs in DT . The tagged codewords are in some sense
self-synchronizing at the byte level because of their most significant bit set to 1.
In fact it is not possible that a byte-aligned codeword overlaps two or more other
codewords, since it should have at least one internal byte with its most signifi-
cant bit set to 1. Similarly, it is not possible that a codeword is byte-aligned and
starts inside another codeword, because the latter should again have at least one
internal byte with its most significant bit set to 1. Such a bijection allows us to
convert every word-based query formulated on a pattern w and the text T , into
a byte-aligned substring query formulated on the tagged codeword cw, relative
to w, and the digested text DT .

Of course more complicated word queries on T , like prefix-word or suffix-
word queries, can be translated into multiple substring queries on DT as follows.
Searching for the occurrences of a pattern P as a prefix of a word in T consists of
three steps: (1) search in the Huffword dictionary D for all the words prefixed by
P , say w1, w2, . . . , wk; (2) compute the tagged codewords cw1, cw2, . . . , cwk for
these words, and then (3) search for the occurrences of the cwi into the digested
text DT . Other word-based queries can be similarly implemented.

It is natural to use an FM-index built over DT to support the codeword
searches over the digested text. Here the FM-index takes as characters of the
indexed text DT its constituting bytes. This approach has a twofold advantage:
it reduces the space occupied by the (digested) byte sequence DT and supports
over DT effective searches for byte-aligned substrings (i.e. codewords).

The WFM-index therefore consists of two parts: a full-text index FM-index(D)
built over the Huffword dictionary D, and a full-text index FM-index(DT ) built
over the digested text DT . The former index is used to search for the queried
word (or for its variants) into the dictionary D; from the retrieved words we
derive the corresponding (set of) codewords which are then searched in DT
via FM-index(DT ). Hence a single word-based query on T , can be translated
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by WFM-index into a set of exact substring queries to be performed by FM-
index(DT ).

The advantage of the WFM-index over the standard FM-index should be
apparent. Queries are word-oriented so that the time consuming post-processing
phase has been avoided; counting or existential queries are directly executed
on the (small) dictionary D without even accessing the compressed file; the
overall space occupancy is usually smaller than the one required by the FM-
index because D is small and DT has a lot of structure that can be exploited by
the Burrows-Wheeler compressor present in WFM-index. This approach needs
further experimental investigation and engineering, although some preliminary
experiments have shown that WFM-index is very promising.

4.4 Some open problems and future research directions

In this section we have discussed the interplay between data compression and
indexing. The FM-index is a promising data structure which combines effective
space compression and efficient full-text queries. Recently, the authors of [75]
have shown that another compressed index does exist that, based on the BWT
and the Lempel-Ziv parsing [192], answers arbitrary pattern queries in O(p+occ)
time and occupies O(nHk(T ) logǫ n) + o(n) bits of storage. Independently, [150]
has presented a simplified compressed index that does not achieve these good
asymptotic bounds but it could be suitable for practical implementation. The
main open problem left in this line of research is the design of a data structure
which achieves the best of the previous bounds: O(p + occ) query time and
O(nHk(T )) + o(n) bits of storage occupancy. However, in our opinion, the most
challenging question is if, and how, locality of reference can be exploited in these
data structures to achieve efficient I/O-bounds. We aim at obtaining O(occ/B)
I/Os for the location of the pattern occurrences, where B is the disk-page size.
In fact, the additive term O(p) I/Os is negligible in practice because any user-
query is commonly composed of few characters. Conversely occ might be large
and thus force the locate procedure to execute many random I/Os in the case
of a large indexed text collection. An I/O-conscious compressed index might
compete successfully against the String B-tree data structure (see Section 3.3).

The Burrows-Wheeler transform plays a central role in the design of the
FM-index. Its computation relies on the construction of the suffix array of the
compressed string; this is the actual algorithmic bottleneck for a fast implemen-
tation of this compression algorithm. Although a plethora of papers have been
devoted to engineering the suffix sorting step [42,174,68,176,165,156,31], there
is still room for improvement [124] and investigation. Any advancement in this
direction would immediately impact on the compression time performance of
bzip2. As far as the compression ratio of bzip2 is concerned, we point out that
the recent improvements presented in the literature are either limited to special
data collections or they are not fully validated [43,44,166,167,68,26,25]. Hence
the open-source software bzip2 yet remains the choice [176]. Further study, sim-
plification or variation on the Burrows-Wheeler transform are needed to improve
its compression ratio and/or possibly impact on the design of new compressed
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indexes. The approach followed in WFM-index is an example of this line of
research.

Although we have explained in the previous sections how to perform sim-
ple exact searches, full-text indexes can do much more. In Section 3.1 we have
mentioned that suffix trees can support complex searches like approximate or
similarity-based matches, as well regular expression searches. It is also well-
known that suffix arrays can simulate any algorithm designed on suffix trees at
an O(log n) extra-time penalty. This slowdown is payed for by the small space
occupied by the suffix array. It is clear at this point that it should be easy to
adapt these algorithms to work on the FM-index or on the WFM-index. The
resulting search procedures might benefit more from the compactness of these
indexes, and therefore possibly turn into in-memory some (e.g. genomic) com-
putations which now require the use of disk, with consequent poor performance.
This line of research has been pioneered in the experimental setting by [170]
which showed that compressed suffix arrays can be used as filtering data struc-
ture to speed up similarity-based searches on large genomic databases. From the
theoretical point of view, [56] recently proposed another interesting use of com-
pression for speeding up similarity-based computations in the worst case. There
the dynamic programming matrix has been divided into variable sized blocks,
as induced by the Lempel-Ziv parsing of both strings [192], and the inherent
periodic nature of the strings has been exploited to achieve O(n2/ logn) time
and space complexity. It would be interesting to combine these ideas with the
ones developed for the FM-index in order to reduce the space requirements of
these algorithms without impairing their sub-quadratic time complexity (which
is conjectured in [56] to be close to optimal).

The FM-index can also be used as a building block of sophisticated Infor-
mation Retrieval tools. In Section 2 we have discussed the block-addressing
scheme as a promising approach to index moderate sized textual collections,
and presented some approaches to combine compression and block-addressing
for achieving better performance [122,153]. In these approaches opportunistic
string-matching algorithms have been used to perform searches on the com-
pressed blocks thus achieving an improvement of about 30-50% in the final per-
formance. The FM-index and WFM-index naturally fit in this framework because
they can be used to index each text block individually [75]; this way, at query
time, the compressed index built over the candidate blocks could be employed
to fasten the detection of the pattern occurrences. It must be noted here that
this approach fully exploits one of the positive properties of the block-addressing
scheme: The vocabulary allows to turn complex searches on the indexed text into
multiple exact-pattern searches on the candidate text blocks. These are properly
the types of searches efficiently supported by FM-index and WFM-index. A
theoretical investigation using a model generally accepted in Information Re-
trieval [21] has showed in [75] that this approach achieves both sublinear space
overhead and sublinear query time independent of the block size. Conversely, in-
verted indices achieve only the second goal [188], and the classical Glimpse tool
achieves both goals but under some restrictive conditions on the block size [21].
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Algorithmic engineering and further experiments on this novel IR system are yet
missing and worth to be pursued to validate these good theoretical results.

5 Conclusions

In this survey we have focused our attention on algorithmic and data structural
issues arising in two aspects of information retrieval systems design: (1) rep-
resenting textual collections in a form which is suitable to efficient searching
and mining; (2) design algorithms to build these representations in reasonable
time and to perform effective searches and processing operations over them.
Of course this is not the whole story about this huge field as the Informa-
tion Retrieval is. We then conclude this paper by citing other important as-
pects that would deserve further consideration: (a) file structures and database
maintenance; (b) ranking techniques and clustering methods for scoring and
improving query results; (c) computational linguistics; (d) user interfaces and
models; (e) distributed retrieval issues as well security and access control man-
agement. Every one of these aspects has been the subject of thousands of papers
and surveys ! We content ourselves to cite here just some good starting points
from which a user can browse for further technical deepenings and bibliographic
links [188,22,123,1].

Acknowledgments This survey is the outcome of hours of highlighting and,
sometime hard and fatiguing, discussions with many fellow researchers and
friends. It encapsulates some results which have already seen the light in various
papers of mine; some other scientific results, detailed in the previous pages, are
however yet unpublished and probably they’ll remain in this state! So I’d like to
point out the persons who participated to the discovery of those ideas. The engi-
neered version of String B-trees (Section 3.4) has been devised in collaboration
with Roberto Grossi; the randomized algorithm for string sorting in external
memory (Section 3.6) is a joint result with Mikkel Thorup; finally, the WFM-
index (Section 4.3) is a recent advancement achieved together with Giovanni
Manzini. I finally thanks Valentina Ciriani and Giovanni Manzini for carefully
reading and commenting the preliminary versions of this survey.

References

1. Home Page of ACM’s Special Interest Group on information retrieval,
http://info.sigir.acm.org/sigir/.

2. The XML home page at the WWW Consortium, http://www.w3.org/XML/.
3. Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. L. The

Lorel query language for semistructured data. International Journal on Digital
Libraries 1, 1 (1997), 68–88.

4. Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F. Estimating the
selectivity of XML path expressions for Internet scale applications. In Proc. of
the International Conference on Very Large Data Bases (2001), pp. 591–600.

http://info.sigir.acm.org/sigir/
http://www.w3.org/XML/


www.manaraa.com

48

5. Acharya, A., Zhu, H., and Shen, K. Adaptive algorithms for cache-efficient
tries. In Proc. of the Workshop on Algorithm Engineering and Experimentation
(1999), Lecture Notes in Computer Science vol. 1619, Springer Verlag, pp. 296–
311.

6. Aguilera, V., Cluet, S., Veltri, P., Vodislav, D., and Wat-

tez, F. Querying XML documents in Xyleme. In Proc. of the
ACM-SIGIR Workshop on XML and Information Retrieval (2000),
http://www.haifa.il.ibm.com/sigir00-xml/.

7. Ahn, V., and Moffat, A. Compressed inverted files with reduced deconding
overhead. In Proc. of the ACM-SIGIR Conference on Research and Development
in Information Retrieval (1998), pp. 290–297.

8. Ailamaki, A., DeWitt, D., Hill, M., and Wood, D. DBMSS on a modern
processor: where does time go? In Proc. of the International Conference on Very
Large Data Bases (1999), pp. 266–277.

9. Amir, A., Benson, G., and Farach, M. Let sleeping files lie: Pattern matching
in Z-compressed files. Journal of Computer and System Sciences 52, 2 (1996),
299–307.

10. Amir, A., Farach, M., Idury, R., La Poutré, J., and Schäffer, A. Im-
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Fig. 3. An illustrative example depicting a String B-tree built on a set ∆ of DNA
sequences. ∆’s strings are stored in a file separated by special characters, here
denoted with black boxes. The triangles labeled with PT depict the Patricia trees
stored into each String B-tree node. The figure also shows in bold the String B-
tree nodes traversed by the search for a pattern P = “CT ′′. The circled pointers
denote the suffixes, one per level, explicitly checked during the search; the pointers
in bold, in the leaf level, denote the five suffixes prefixed by P and thus the five
positions where P occurs in ∆.
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Fig. 4. An example of Patricia tree built on a set of k = 7 DNA strings drawn
from the alphabet Σ = {A, G, C, T }. Each leaf points to one of the k strings;
each internal node u (they are at most k − 1) is labeled with one integer len(u)
which denotes the length of the common prefix shared by all the strings pointed
by the leaves descending from u; each arc (they are at most 2k − 1) is labeled
with only one character (called branching character). The characters between
square-brackets are not explicitly stored, and denote the other characters labeling
a trie arc.
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p1 p3 p5p4

0 1

0

0 0 01

1 1

1 1

0

p2 p6 p7

A = 00
G = 10
C = 11
T = 01

SA   = [ p1, p2, p3, p4, p5, p6, p7]

Lcp  = [ 10, 6, 0, 12, 8, 12 ]

skip = [ 10, −4, −6, 12, −4, 4 ]

x

0

8

A
G
A
A
G
A

A
G
A
A
G
G

A
G
A
C

G
C
G
C
A
G
A

G
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G
G

G
C
G
C
G
G
A

G
C

C
G
G
G
A

G

6

10 12 12

x’

Fig. 5. The arrays SP and Lcp computed on the Patricia tree of Figure 4. The
array Skip is derived from the array Lcp by subtracting its adjacent entries. The
Skips and Lcps are expressed in bits.
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Input: A set S of K strings, whose total length is N (bits)
Output: A sorted permutation of S

1. Every string of S is partitioned into pieces of L bits each. L is chosen to be much
larger than 2 log

2
K.

2. Compute for each string piece a name, i.e. a bit string of length 2 log
2
K, by means

of a proper hash function. Each string of S is then compressed by replacing L-
pieces with their corresponding names. The resulting set of compressed strings is
denoted with C, and its elements are called c-strings.

3. Sort C via any known external-memory sorting algorithm (e.g. Mergesort).
4. Compute the longest common prefix between any pair of c-strings adjacent in (the

sorted) C and mark the (at most two) mismatching names. Let lcpx be the number
of names shared by the xth and the (x + 1)th string of C.

5. Scan the set C and collect the (two) marked names of each c-string together with
their corresponding L-pieces. Sort these string pieces (they are at most 2K) and
assign a rank to each of them— equal pieces get the same rank. The rank is
represented with 2 log

2
K bits (like the names of the string pieces), possibly padding

the most significant digits with zeros.
6. Build a (logical) table T by mapping c-strings to columns and names of L-pieces to

table entries: T [a, b] contains the ath name in the bth c-string of C. Subsequently,
transform T ’s entries as follows: replace the marked names with their corresponding
ranks, and the other names with a bit-sequence of 2 log

2
K zeros. If the c-strings

have not equal length, pad logically them with zeros. This way names and ranks
are formed by the same number of bits, c-strings have the same length, and their
(name or rank) pieces are correctly aligned.

7. Perform a forward and backward pass through the columns of T as follows:

(a) In the rightward pass, copy the first lcpx−1 entries of the (x − 1)th column of
T into the subsequent xth column, for x = 2, ..., K. The mismatching names
of the xth column are not overridden.

(b) In the leftward pass, copy the first lcpx entries of the (x + 1)th column of T
into the xth column, for x = K − 1, ...., 1.

8. The columns of T are sorted via any known external-memory sorting algorithm
(e.g. Mergesort). From the bijection: string ↔ c-string ↔ column; we derive the
sorted permutation of S .

Fig. 6. A randomized algorithm for sorting arbitrary long strings in external
memory.
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L-piece name rank

aa 6 1
ab 1 2
bb 4 3
bc 2 -
ca 5 4
cb 3 5
cc 7 6

Fig. 7. Names of all L-pieces and ranks of the marked L-pieces. Notice that the
L-piece bc has no rank because it has been not marked in Step 4.

ab bb ab bb aa ab
ab bc ab bc bb cc
bc ca bc cc cc aa
cb aa aa cc bb bc
ab bb bb aa aa ab

1 2 3 4 5 6
i. Step 1

1 4 1 4 6 1
1 2 1 2 4 7
2 5 2 7 7 6
3 6 6 7 4 2
1 4 4 6 6 1

1 2 3 4 5 6
ii. Step 2

1 1 1 4 4 6
1 1 7 2 2 4
2 2 6 5 7 7
3 6 2 6 7 4
1 4 1 4 6 6

1 3 6 2 4 5
iii. Steps 3–5

Fig. 8. Strings are written from the top to the bottom of each table column. (i)
Strings are divided into pieces of 2 chars each. (ii) Each L-piece is substituted
with its name taken from the (hash) table of Figure 7. (iii) Columns are sorted
and mismatching names between adjacent columns are underlined.

0 0 2 3 3 1
0 2 6 0 0 0
0 0 0 4 6 0
5 1 0 0 0 0
0 0 0 0 0 0

1 3 6 2 4 5
i. Step 6 and 7(a)

2 2 2 3 3 1
2 2 6 0 0 0
0 0 0 4 6 0
5 1 0 0 0 0
0 0 0 0 0 0

1 3 6 2 4 5
ii. Step 7(b)

1 2 2 2 3 3
0 2 2 6 0 0
0 0 0 0 4 6
0 1 5 0 0 0
0 0 0 0 0 0

5 3 1 6 2 4
iii. Step 8

Fig. 9. (i) The rightward pass through table T . (ii) The leftward pass through
table T . (iii) The sorted T .
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mississippi#

ississippi#m

ssissippi#mi

sissippi#mis

issippi#miss

ssippi#missi

sippi#missis

ippi#mississ

ppi#mississi

pi#mississip

i#mississipp

#mississippi

=⇒

F L

# mississipp i

i #mississip p

i ppi#missis s

i ssippi#mis s

i ssissippi# m

m ississippi #

p i#mississi p

p pi#mississ i

s ippi#missi s

s issippi#mi s

s sippi#miss i

s sissippi#m i

Fig. 10. Example of Burrows-Wheeler transform for the string T =
mississippi. The matrix on the right has the rows sorted in lexicographic order.
The output of the BWT is column L; in this example the string ipssm#pissii.

Algorithm get rows(P [1, p])

1. i = p, c = P [p], first = C[c] + 1, last = C[c + 1];

2. while ((first ≤ last) and (i ≥ 2)) do

3. c = P [i − 1];

4. first = C[c] + Occ(c, first − 1) + 1;

5. last = C[c] + Occ(c, last);

6. i = i − 1;

7. if (last < first) then return “no rows prefixed by P [1, p]” else return

(first, last).

Fig. 11. Algorithm get rows finds the set of rows prefixed by pattern P [1, p].
Procedure Occ(c, k) counts the number of occurrences of the character c in the
string prefix L[1, k]. In [75] it is shown how to implement Occ(c, k) in constant
time.
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